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I.  INTRODUCTION 
Breast mass segmentation is arguably one of the most difficult tasks in the development of 

Computer-Aided Diagnostic (CADx) systems.  The main objective of this research is to develop an image 
segmentation method for mammograms that contain dense tissue as well as for mammograms that contain 
dense/fatty tissue, while its second objective is to incorporate the segmentation method into a CADx 
system.  Specifically, we intended to do the following:  (1) To develop an automatic image segmentation 
scheme to separate clinically occult breast masses from surrounding tissue (2) To evaluate the method by 
comparing the ROIs with mammographers’ drawings and (3) To separate masses from glandular tissues 
using the Multiple Circular Path Convolution Neural Network (MCPCNN) classifier.  The following is a 
summary of the PI’s research and training activities during the grant period. 

   
II.  BODY  

During the past 36 months the PI has tested and validated an automatic image segmentation 
algorithm on a set of dense breast mass cases.   This section of the final summary provides a detailed 
description of the research and training tasks on a year-by-year basis.  Part A summarizes the activities 
that occurred during months 1-12, Part B summarizes the activities that occurred during months 13-24, 
and Part C summarizes the activities that occurred during months 25-36.     
 
A.  Year 1, Months 1-12 

During the first year, the PI performed the initial database collection, coordinated ground truth 
tracing sessions with two expert radiologists, attended medical image conferences, attended local medical 
image meetings, and team taught an imaging technologies course at the Catholic University of America. 

  
A.1 Key Research Accomplishments – Year 1 
1. Expanded database to 300 images collected from Digital Database for Screening Mammography 

(DDSM) 
• Cases have American College of Radiology (ACR) density ratings of 3 and 4 
• Collected Georgetown University Medical Center (GUMC) data for expansion of current database 

 
2. Tested current segmentation method on 198 images 
 
3. Conducted expert radiologist trace sessions with first radiologist 

• first radiologist traced 298 masses 
• second radiologist has agreed to trace masses 

 
A.2 Reportable Outcomes – Year 1 
Manuscripts 
1. Published manuscript in proceedings of International Symposium on Biomedical Imaging (ISBI) 

2004 meeting: “Likelihood Function Analysis for Segmentation of Mammographic Masses for 
Various Margin Groups”  

 
2. Submitted manuscript to Journal of Medical Physics: “Steepest changes of a probability-based cost 

function for delineation of mammographic masses:  A validation study”manuscript is currently 
undergoing 2nd review by editors 

 
Oral Presentation 
“Likelihood Function Analysis for Segmentation of Mammographic Masses for Various Margin Groups”, 
ISBI Meeting, Arlington, VA 
 
 

 4



Technical Development Activities: 
1. Attended two cancer imaging workshops conducted by the Washington Academy of Biomedical 

Engineering: 
• 11/12/03:  “Cancer Imaging for the Operating Room of 2020” (Georgetown University) 
• 9/29/03:  "Individualized  Treatment Using Pharmaco-Genomics & Functional  

Imaging" (George Washington University) 
2. Attended weekly cancer workshops conducted by the Howard University Cancer Center (made oral 

presentation in December of 2003) 
3. Attended International Symposium on Biomedical Imaging (ISBI) 2004 meeting 
4. Attended SPIE Medical Imaging Meeting 
5. Taught “Computer-Aided Diagnosis” portion of “Introduction to Imaging Technologies” course, The 

Catholic University of America, course number ENGR552 
 
B.  Year 2, Months 13-24 

During the second year the PI has tested and validated an automatic image segmentation algorithm 
on a set of dense breast mass cases for both non-processed and background trend corrected images.   The 
following is a detailed description of the experiments and is divided into the following sections (B.1) 
Experiments: (B.1.1) Segmentation Method – an overview of the automated image segmentation method 
(please see Appendix for detailed description of method) (B.1.2) Database and Experiments – description 
of masses used and experiments performed (B.1.3) Results – statistical and graphical results of the 
experiment and (B.1.4) Discussion of Results; (B.2) Key Research Accomplishments; and (B.3) 
Reportable Outcomes.   
 
B.1 Experiments 
B.1.1 Segmentation Method 

The segmentation method used in this study evaluates the steepest changes within a probabilistic cost 
function in an effort to determine the computer segmented contour which is most closely correlated with 
expert radiologist manual traces.  It segments breast masses by combining region growing with the 
analysis of a probability-based function [1].  Once a set of contours is grown using region growing the 
probability density functions inside and outside the contours are found.  A function, which is the 
logarithm of these probability density functions, is then constructed.  The function is then searched for 
possible steep change locations, i.e., sharp changes in the logarithm values, and the intensities 
corresponding to those locations are likely to produce contours which are highly correlated with expert 
traces.  A detailed description of the method is provided in the manuscripts located in the appendix of this 
document [2, 3].  
 
B.1.2 Database and Experiments 

Three-hundred forty-two cases have been selected from the University of South Florida’s Digital 
Database for Screening Mammography (DDSM) [2], where 175 of these cases are cancerous masses and 
167 of the cases are benign masses.  The densities of all cases from the DDSM have been rated according 
to the American College of Radiology’s (ACR) density scale, which ranges from 1-4.  A breast containing 
a great deal of fatty tissue would receive a rating of 1 and a breast containing a great deal of dense tissue 
would receive a rating of 4.  The current database contains 242 cases with a density rating of 3 and 100 
cases with a density rating of 4.  In the current experiment the cost likelihood function threshold values 
(TV1 and TV2) were set to 1800 and 1300, respectively.  Approximately 300 of the cases were manually 
traced by two expert radiologists. All cases have been validated by both radiologists, where the validation 
measures are overlap, accuracy, sensitivity, specificity, Dice Similarity Index (DSI), and kappa statistics 
as described in the literature [3,4] and manuscripts [5-7].  Initially, the images were not pre-processed in 
order to preserve the true mass borders.  In hopes of attaining higher validation statistical values, the PI 
applied the background trend correction technique to the entire dataset and ran a second segmentation 
experiment on the pre-processed images. 
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B.1.3.  Results 
Statistical Results 

Tables 1-4 contain p-values for Analysis of Variance (ANOVA) tests, in which a set of intra-
observer experiments were performed to determine the value of pre-processing on segmentation results.  
Specifically, the PI tested non-processed versus pre-processed datasets for all statistical measures, and 
both expert radiologists.  A table entry containing “NS” implies that there were no statistically significant 
differences for a particular test.  The computer produces the three traces which it feels are the closest 
contours to those traced by the expert radiologists, so the results shown in the table contain results for 
tests for all three groups.  Further, the maximum values of statistical measures for a subset of cancer cases 
were found to find the proximity between the optimal region-growing trace as determined by the 
computer and the region-growing trace with the highest possible value for a particular measure.     
 

Table 1 – ANOVA test P-values for Intra-observer Experiment:   
Non-Processed vs. Pre-Processed Cancer Cases (Expert A) 

  Overlap Accuracy Sensitivity Specificity DSI kappa 
Group 1 Trace 2.2x10-6 NS 1.4x10-6 3.4x10-3 4.5x10-7 1.4x10-3 
Group 2 Trace 4.0x10-4 NS 1.3x10-5 3.8x10-6 9.4x10-5 3.5x10-2 
Group 3 Trace 4.3x10-6 NS 1.5x10-5 2.7x10-4 1.1x10-5 2.8x10-2 

 
Table 2 – ANOVA test P-values for Intra-observer Experiment:   

Non-Processed vs. Pre-Processed Benign Cases (Expert A) 
  Overlap Accuracy Sensitivity Specificity DSI kappa 
Group 1 Trace 1.37x10-6 NS 2.0x10-6 NS 3.8x10-7 2.9x10-5 
Group 2 Trace 2.2x10-3 NS 1.6x10-5 3.4x10-4 4.9x10-4 1.5x10-2 
Group 3 Trace NS NS 5.1x10-6 4.6x10-5 NS NS 

 
Table 3 – ANOVA test P-values for Intra-observer Experiment:   

Non-Processed vs. Pre-Processed Cancer Cases (Expert B) 
  Overlap Accuracy Sensitivity Specificity DSI kappa 
Group 1 Trace 3.5x10-5 NS 2.0x10-6 1.2x10-3 1.1x10-5 2.8x10-3 
Group 2 Trace NS NS 1.3x10-4 6.4x10-8 3.2x10-2 NS 
Group 3 Trace NS 2.2x10-2 7.0x10-4 3.7x10-6 NS NS 

 
Table 4 – ANOVA test P-values for Intra-observer Experiment:   

Non-Processed vs. Pre-Processed Benign Cases (Expert B) 
  Overlap Accuracy Sensitivity Specificity DSI kappa 
Group 1 Trace 9.8x10-7 NS 1.7x10-6 NS 2.3x10-7 9.0x10-6 
Group 2 Trace 1.8x10-3 NS 4.1x10-6 1.3x10-4 3.9x10-4 6.8x10-3 
Group 3 Trace NS NS 3.7x10-7 1.2x10-5 NS NS 

 
Table 5 – Mean Statistical Values Non-Processed Cases:  Expert A, Cancer Cases 

  Overlap Accuracy Sensitivity Specificity DSI kappa 
Group 1 Trace 0.18 0.72 0.18 1.0 0.27 0.22
Group 2 Trace 0.34 0.76 0.37 0.997 0.47 0.39
Group 3 Trace 0.36 0.76 0.46 0.95 0.51 0.40
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Table 6 – Mean Statistical Values Non-Processed Cases:  Expert B, Cancer Cases 
 Overlap Accuracy Sensitivity Specificity DSI kappa
Group 1 Trace 0.36 0.81 0.39 0.97 0.50 0.42
Group 2 Trace 0.50 0.84 0.63 0.92 0.64 0.54
Group 3 Trace 0.47 0.81 0.70 0.86 0.62 0.50

  
 

Table 7 – Mean Statistical Values Pre-Processed Cases:  Expert A, Cancer Cases 
  Overlap Accuracy Sensitivity Specificity DSI kappa 
Group 1 Trace 0.17 0.72 0.18 1.0 0.27 0.22
Group 2 Trace 0.34 0.76 0.37 0.99 0.47 0.39
Group 3 Trace 0.36 0.75 0.46 0.95 0.51 0.40

 
 

Table 8 – Mean Statistical Values Pre-Processed Cases:  Expert B, Cancer Cases 
  Overlap Accuracy Sensitivity Specificity DSI kappa 
Group 1 Trace 0.25 0.83 0.26 1.0 0.37 0.33
Group 2 Trace 0.45 0.86 0.49 0.99 0.57 0.53
Group 3 Trace 0.43 0.84 0.59 0.94 0.58 0.51 

 
 

Table 9 – Mean Values for Contour Yielding Maximum Value vs. Computer Choice Contours 
 Mean 

Maximum 
Overlap 
Value 

Mean Group 
1 Overlap 

Value 

Mean 
Group 2 
Overlap 
Value 

Mean 
Group 3 
Overlap 
Value 

Expert A 0.62 0.28 0.45 0.48 
Expert B 0.60 0.47 0.50 0.36 

  

 7



Visual Results 
Figures 1-4 show segmentation results for both the pre-processed and non-processed mass cases 
. 
 

 

Expert A Expert BROI Group 1 Group 2 Group 3
Figure 1b – Cropped original With Computer Results (Non-Processed Image)

mass 

Figure 1a – Original Image
(Cancer Case, Density=3) Figure 1c – Cropped original With Computer 

Results (Pre-Processed Image) 

Figure 1:  Computer Segmentation Results for a Cancerous Mass 
 
 
 

 

Image)

Figure 2c – Cropped original With Computer 
Results (Pre-Processed Image) 

ROI Group 1 Expert A Group 2 Group 3 Exp
Figure 2b – Cropped original With Computer Results (Non-Processed

ert B

mass 

Figure 2a – Original Image 
(Cancer Case, Density=3) 

Figure 2:  Computer Segmentation Results for a Cancerous Mass 
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Figure 3b – Cropped original With Computer Results (Non-Processed Image)
Expert BGroup 2 Group 3 Expert A Group 1ROI

mass 

Figure 3c – Cropped original With Computer 
Results (Pre-Processed Image) 

Group 3 Group 2 Group 1 ROIFigure 3a – Original Image
Benign Case, Density=3) 

Figure 3:  Computer Segmentation Results for a Benign Mass 
 
 
 
 

 

mass 

ROI Group 1 Expert A Group 2 Group 3 Expert B
Figure 4b – Cropped original With Computer Results (Non-Processed Image)

Group 1 Group 2 Group 3 ROI
Figure 4a – Original Image 
Benign Case, Density=3) Figure 4c – Cropped original With Computer 

Results (Pre-Processed Image) 

Figure 4:  Computer Segmentation Results for a Benign Mass 
 
B.1.4.  Discussion of Results  

It has been observed that the segmentation algorithm produces better results using the non-processed 
images as inputs rather than using the pre-processed images as inputs, under the given set of parameters.  
As stated previously, the intensity corresponding to the location where the steep likelihood changes occur 
is likely to produce the contour that matches closely with the expert radiologist traces.  The steep change 
location is determined by a set of threshold values determined by the user.  The background trend 
correction process generally causes dark areas in the image to become darker, therefore, the contrast 
between the mass and background is higher for some cases.  This, in turn creates more steep changes in 
the likelihood functions, which may have formerly been smooth.  Therefore, the computer is likely to 
choose higher intensity values, consequently the contours will be small.   

The ANOVA test results show that there were statistically significant differences between the non-
processed and pre-processed images for both expert radiologists, for most statistics, where the mean 
values were higher for non-processed vs. pre-processed images for most statistics.  These results imply 
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that it may not be necessary to pre-process the images, but rather to use different parameters for the 
automated selection process of finding optimal contours.  Preliminary work has been done to determine 
how close the statistical values of the computer chosen contours are to those of the contours which obtain 
the greatest statistical values (see Table 9).     
 
B.2. Key Research Accomplishments 
1. Completed expert radiologist tracing of 300 masses 
2. Tested the efficacy of background trend correction upon segmentation improvement 
3. Added Dice Similarity Index (DSI) and kappa statistics as validation measures 
4. Validated masses using all validation measures 
5. Reviewed literature concerning inter-observer variability 
 
B.3 Reportable Outcomes 
Manuscripts: 
1. L. Kinnard, S.-C. B. Lo, E. Makariou, T. Osicka, P. Wang, M.T. Freedman, M. Chouikha, “Steepest 

changes of a probability-based cost function for delineation of mammographic masses: A validation 
study,” J. of Medical Physics, vol. 31, no. 10, 2004, pp. 2796-2810. 

2. L. Kinnard, S.-C. B. Lo, E. Makariou, T. Osicka, P. Wang, M.T. Freedman, M. Chouikha, “Steepest 
changes of a probability-based cost function for delineation of mammographic masses: A validation 
study,” Virtual Journal of Biophysics, Vol. 8, Issue 7, Oct. 1, 2004, http://www.vjbio.org/bio/ 
(selected across several medical and biophysics journals). 

3. L. Kinnard, S.-C. B. Lo, E. Duckett, E. Makariou, M.T. Freedman, and M. Chouikha, “Mass 
Segmentation of Dense Breasts on Digitized Mammograms: Analysis of probability-based function,” 
Medical Imaging 2005:  Image Processing, February, 2005, Proceedings of SPIE, vol. 5747, pp. 
1813-1823. 

 
Poster Presentation: 
1. L. Kinnard, S.-C. B. Lo, E. Duckett, E. Makariou, M.T. Freedman, and M. Chouikha, “Mass 

Segmentation of Dense Breasts on Digitized Mammograms: Analysis of probability-based function,” 
Medical Imaging 2005:  Image Processing, February, 2005, Proceedings of SPIE, vol. 5747, pp. 
1813-1823. 

 
Oral Presentations: 
1. “The Post-Doctoral Experience:  A Year in Review”, Preparing for the Postdoctoral Institute, 

August, 2004, Howard University and The University of Texas at El Paso. 
2. “Computer-Aided Diagnosis and Image Segmentation of Mammographic Masses”, Symposium on 

Translational Research for Cancer Detection, Diagnosis, Prevention, and Treatment, The Howard 
University Cancer Center and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 
November, 2004. 

 
Technical Development Activities: 
1. Attended meetings and one workshop of the Washington Academy of Biomedical Engineering 

(WABME) 
2. Attended cancer workshops conducted by the Howard University Cancer Center  
3. Attended SPIE Medical Imaging Meeting (February, 2005, San Diego, CA) 
4. Served as the Faculty Retreat Committee Chair, for which the theme was a grant proposal writing 

contest.  The PI also served as the PI of her group, and the group placed 2nd out of eight groups.     
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C. Year 3 – Months 25-36 
 During the final year of the grant period, the PI performed several dense breast segmentation 
experiments, attended several conferences and meetings, gave oral presentations to graduate students, and 
interviewed for various research and teaching positions.   Section (C.1.1) describes the experiments 
performed during the final year, section (C.1.2) gives results for these experiments, section (C.1.3) 
provides a discussion of results, section (C.2) lists key research accomplishments, and section (C.3) lists 
reportable outcomes.  The segmentation algorithm and image database have been described in sections 
B.1.1-B.1.2.    
 
C.1. Experiments 
C.1.1. Experiment Descriptions 

For all tables in this section, a table entry containing the abbreviation “NS” means “No 
Significant” difference, so there was no statistically significant difference for a particular test.  All tables 
contain intra-observer experiments, or, comparisons between the computer traces and two expert 
radiologists, namely, Expert A and Expert B.  The probabilistic-likelihood method narrows a set of 200-
500 traces to a set of three possible choices that will best match the radiologist traces, namely, group 1, 
group 2, and group 3 traces.  Typically, the group 1 trace encapsulates the mass body, the group 2 trace 
encapsulates the mass body + the mass borders that extend into surrounding fibroglandular tissue, and the 
group 3 trace encapsulates  the mass body + the mass borders that extend into surrounding fibroglandular 
tissue + additional tissue that may not belong to the mass.   

     
Experiment 1 

During the second year of the grant period the PI began an experiment which compared the 
segmented results to the maximum achievable values for each validation statistic, namely, the overlap, 
accuracy, sensitivity, specificity, and Dice Similarity Index (DSI) statistics.  Tables 10-17 contain results 
for these experiments.   

 
Experiment 2 

In previous studies the PI and colleagues determined that the computer algorithm was capable of 
narrowing a set of 200-500 possible contour traces to the trace which would closely match manual ground 
truth traces provided by expert radiologists.  In the case of dense breast masses this optimal trace is more 
difficult to determine due to the masses’ unclear borders, therefore the set of 200-500 possible contour 
traces were narrowed to two possible optimal traces.  The PI added yet a third expert radiologist trace to 
see if this person could serve as a “tie-breaker”, and would therefore strongly agree with Expert A or 
Expert B.  The details of this experiment can be found in the PI’s submission to the ISBI 2006 
conference, located in the appendix of this document.   
 
Experiment 3 

In a third experiment the PI compared the probabilistic-likelihood method (the algorithm used 
throughout the research study) to a Gradient Vector Flow (GVF) algorithm developed by a research group 
at The Johns Hopkins University.  The details of the GVF algorithm are described in a summary which is 
a portion of a manuscript comparing the two algorithms to be submitted to the Journal of Physics and 
Medicine in Biology.  Tables 18-25 contain the results of this third experiment.   
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C.1.2. Results 
 
Maximum Value Experiment Results 
Cancerous Mass Case Results 
 

Table 10 – ANOVA test P-values:   
Max Values vs. Computer Choice Cancer Cases (Expert A) 

 Overlap Accuracy Sensitivity Specificity DSI 
Group 1 Trace 5.0x10-12 5.3x10-4 4.1x10-31 NS 2.3x10-11 
Group 2 Trace 4.6x10-3 4.4x10-2 1.4x10-14 NS 5.2x10-3 
Group 3 Trace 2.7x10-4 2.1x10-3 7.4x10-11 6.3x10-5 4.7x10-4 

 
 

Table 11 – Mean Values of  Computer Choice and Max Value  
Statistical Measurements (Expert A, Cancer Cases) 

 Overlap Accuracy Sensitivity Specificity DSI 
Group 1 Trace 00..3311 00..7755 00..3344 00..9977 00..4455 
Group 2 Trace 00..4499 00..8800 00..5588 00..9933 00..6633 
Group 3 Trace 00..4488 00..7799 00..6655 00..8888 00..6633 
Max Values 00..6600 00..8888 00..9922 00..9977 00..7733 

 
 

Table 12 – ANOVA test P-values: 
Max Values vs. Computer Choice Cancer Cases (Expert B) 

 Overlap Accuracy Sensitivity Specificity DSI 
Group 1 Trace 33..8855xx1100

-8
 44..11xx1100--33 22..99xx1100--3300 NNSS 99..33xx1100--88 

Group 2 Trace NNSS NNSS 33..11xx1100--1144 NNSS NNSS 
Group 3 Trace 44..44xx1100--33 11..44xx1100--33 44..44xx1100--1122 11..22xx1100--44 66..99xx1100--33 

-8

 
 

Table 13 – Mean Values of  Computer Choice and Max Value 
Statistical Measurements (Expert B, Cancer Cases) 

 Overlap Accuracy Sensitivity Specificity DSI 
Group 1 Trace 00..3377 00..8811 00..4411 00..9966 00..5511 
Group 2 Trace 00..5522 00..8855 00..6655 00..9922 00..6677 
Group 3 Trace 00..4499 00..8822 00..7722 00..8877 00..6644 
Max Values 00..6600 00..8888 00..9955 00..9966 00..7733 

 
 
Benign Mass Case Results 
 

Table 14 – ANOVA test P-values:   
Max Values vs. Computer Choice Benign Cases (Expert A) 

 Overlap Accuracy Sensitivity Specificity DSI 
Group 1 Trace 3.8x10-10 3.5x10-3 1.4x10-30 NS 1.2x10-9 
Group 2 Trace 1.0x10-2 3.3x10-2 9.6x10-15 1.6x10-3 7.5x10-3 
Group 3 Trace 4.2x10-4 1.8x10-4 1.9x10-10 2.8x10-9 2.8x10-4 
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Table 15 – Mean Values of  Computer Choice and Max Value 
Statistical Measurements (Expert A, Benign Cases) 

 Overlap Accuracy Sensitivity Specificity DSI 
Group 1 Trace 0.35 0.83 0.39 0.99 0.48 
Group 2 Trace 0.50 0.86 0.62 0.95 0.64 
Group 3 Trace 0.50 0.83 0.74 0.88 0.64 
Max Values 0.60 0.90 0.97 0.99 0.74 

 
 

Table 16 – ANOVA test P-values:   
Max Values vs. Computer Choice Benign Cases (Expert B) 

 Overlap Accuracy Sensitivity Specificity DSI 
Group 1 Trace 3.8x10-10 3.5x10-3 1.4x10-30 NS 1.2x10-9 
Group 2 Trace 1.0x10-2 3.8x10-3 9.6x10-15 1.6x10-3 7.5x10-3 
Group 3 Trace 4.2x10-4 1.8x10-4 1.7x10-3 2.8x10-9 2.8x10-4 

 
 

Table 17 – Mean Values of  Computer Choice and Max Value 
Statistical Measurements (Expert B, Benign Cases) 

 Overlap Accuracy Sensitivity Specificity DSI 
Group 1 Trace 0.35 0.83 0.39 0.99 0.48 
Group 2 Trace 0.50 0.86 0.62 0.95 0.64 
Group 3 Trace 0.50 0.83 0.74 0.88 0.64 
Max Values 0.60 0.90 0.97 0.99 0.74 

 
 
Probabalistic-Likelihood Algorithm vs. GVF Algorithm Results 
Cancerous Mass Case Results 
 
Table 18:  Probabalistic-Likelihood Algorithm vs. GVF Algorithm Results, Cancer Cases (Expert A) 

 Overlap Accuracy Sensitivity Specificity DSI 
GVF vs. group 1 NS NS NS NS NS 
GVF vs. group 2 5.92x10-11 0.02 1.72x10-12 1.09x10-05 4.1x10-10 
GVF vs. group 3 5.37x10-15 0.02 9.72x10-22 5.17x10-12 8.59x10-15 

 
 

Table 19:  Mean Values of Statistical Measurements (Expert A, Cancer Cases) 
 Overlap Accuracy Sensitivity Specificity DSI 
GVF 0.27 0.70 0.29 0.99 0.41 
group 1 0.27 0.70 0.29 0.98 0.40 
group 2 0.45 0.76 0.52 0.94 0.59 
group 3 0.46 0.75 0.60 0.89 0.62 

 
 
Table 20:  Probabalistic-Likelihood Algorithm vs. GVF Algorithm Results, Cancer Cases (Expert B) 

  Overlap Accuracy Sensitivity Specificity DSI 
GVF vs. group 1 NS NS NS NS NS 
GVF vs. group 2 3.28x10-10 NS 3.28x10-15 8.94x10-08 7.07x10-09 
GVF vs. group 3 3.04x10-08 NS 1.43x10-23 8.85x10-18 1.1x10-07 
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Table 21:  Mean Values of Statistical Measurements (Expert B, Cancer Cases) 
 Overlap Accuracy Sensitivity Specificity DSI 
GVF 0.35 0.82 0.38 0.98 0.50 
group 1 0.36 0.81 0.39 0.97 0.50 
group 2 0.51 0.84 0.64 0.91 0.65 
group 3 0.48 0.81 0.71 0.86 0.63 

 
 
Benign Mass Case Results 
 
Table 22:  Probabalistic-Likelihood Algorithm vs. GVF Algorithm Results, Benign Cases (Expert A) 

 Overlap Accuracy Sensitivity Specificity DSI 
GVF vs. group 1 NS NS NS NS NS 
GVF vs. group 2 2.23x10-07 NS 1.05x10-09 1.7x10-05 5.03x10-06 
GVF vs. group 3 6.6x10-07 NS 1.48x10-22 8.62x10-17 3.73x10-06 

 
 

Table 23:  Mean Values of Statistical Measurements (Expert A, Benign Cases) 
 Overlap Accuracy Sensitivity Specificity DSI 
GVF 0.34 0.82 0.37 0.99 0.49 
group 1 0.32 0.81 0.34 0.99 0.45 
group 2 0.48 0.84 0.57 0.96 0.61 
group 3 0.47 0.80 0.71 0.86 0.61 

 
 
Table 24:  Probabalistic-Likelihood Algorithm vs. GVF Algorithm Results, Benign Cases (Expert B) 
 

 

 Overlap Accuracy Sensitivity Specificity DSI 
GVF vs. group 1 NS NS NS NS NS 
GVF vs. group 2 4.29x10-08 NS 4.75x10-11 6.84x10-06 1.84x10-06 
GVF vs. group 3 1.48x10-05 0.02 5.93x10-25 4.97x10-18 6.93x10-05 

 
Table 25:  Mean Values of Statistical Measurements (Expert B, Benign Cases) 

 Overlap Accuracy Sensitivity Specificity DSI 
GVF 0.37 0.85 0.41 0.99 0.52 
group 1 0.35 0.84 0.37 0.99 0.49 
group 2 0.52 0.87 0.63 0.99 0.65 
group 3 0.48 0.82 0.77 0.85 0.62 

 
C.1.3 Discussion of Results 
 For the maximum value experiment (Experiment 1) there were statistically significant differences 
for Expert A for nearly all statistical measurements, and for all three group traces.  This means that 
according to Expert A, there is more work that needs to be done.  This was the case for both cancerous 
and benign masses.  However for Expert B there were statistically significant differences for the group 1 
and group 3 traces, but only one statistically significant difference (occurred for sensitivity) for the group 
2 trace.  This result is encouraging because it reveals that for the group 2 trace, while the values of the 
statistical measurements are lower than the maximum achievable values, the values are not significantly 
lower than the maximum achievable values.  This was the case for the cancerous masses but not for the 
benign masses.    
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 For the Probablistic-Likelihood vs. GVF experiment there were no statistically significant 
differences between the GVF trace and the group 1 trace for all statistical measurements.  This is an 
expected result because the GVF traces had a tendency to be small, and the group 1 traces were also small 
because they typically encapsulated the mass body, which is also a small area.  This result was consistent 
between observers and for both cancerous and benign masses.  There were statistically significant 
differences for the group 2 traces vs. GVF traces, and for the group 3 traces vs. GVF traces for all 
statistical measurements except for the accuracy measurement.  The mean values for the probabilistic-
likelihood method were consistently higher than those of the GVF method.   
 
C.2 Key Research Accomplishments 
1. Compared probabilistic-likelihood trace choices to traces for which the statistical measurements had 

maximum values 
2. Added a third observer to attempt to find a consensus among observers 
3. Compared probabilistic-likelihood algorithm to GVF algorithm 
4. Performed study which analyzed inter-observer variability, using the STAPLE algorithm (results do 

not appear in this document, but will appear in the manuscript) 
 
C.3 Reportable Outcomes 
 
Conferences and Meetings:   
1. Intercultural Cancer Council Annual Meeting, April 2006 
2. Southern Regional Education Board (SREB) Compact for Faculty Diversity, October 2005  
3. 134th Meeting of the Cancer Advisory Board, June 2005 
4. Department Of Defense CDMRP-Howard University Reverse Site Visit Meeting, April 2006 
 
Technical and Professional Development Activities:   
1. Associate Editor  (Referee) for Journal of Medical Physics submission 
2. Served on National Science Foundation (NSF) grant panel 
3. Attended Georgetown University Post-doctoral meeting:  Finding, Writing, and Husbanding Research 

Grants, by Bill Sansalone 
4. Taught Computer Aided Detection and Diagnosis portion of “Biomedical Device Discovery & 

Development” course taught at the Food and Drug Administration (FDA) Staff College, 
Gaithersburg, MD, Fall, 2005. 

5. Served as a judge for the University of Maryland College Park (UMCP) - University of Maryland 
Baltimore County (UMBC) AGEP conference 

 
Poster Presentation: 
“Mass Segmentation on Dense Breasts on Digitized Mammograms”, L. Kinnard, S.-C. B. Lo, E. 
Duckett, E. Makariou, M.T. Freedman, and M. Chouikha, Department of Defense Era-Of-Hope 
Meeting, June, 2005, Philadelphia, PA. 
 
Oral Presentations: 
1. “Key Components for a Successful Post-Doc”, Preparing for the Postdoctoral Institute, August, 

2005, Howard University and The University of Texas at El Paso. 
2. “Educational Paths and Decisions:  The Road Less Traveled”, The University Of Iowa College of 

Engineering’s Ethnic Inclusion Seminar Series, November, 2005 
3. “Educational Paths and Decisions:  The Road Less Traveled”, North Carolina State University, 

Department of Statistics, February, 2006 
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Grant Proposals Submitted:   
1. American Cancer Society Mentored Research Scholar Grant in Applied and Clinical Research:  

Research Proposals Directed at Poor and Underserved Populations 
• Title:  “Breast Cancer Diagnostic Image Querying System for Minority Women” 
• Initial submission date:  4/1/05; re-submission date 10/15/05 

2. National Institutes of Health (NIH) National Cancer Institute (NCI) Mentored Career Development 
Award for Underrepresented Minorities (K01) 
• Title:  “A Content-Based Image Retrieval System for Breast Masses:  General and Minority 

Populations” 
• Initial submission date:  6/1/05 

3. NIH Cancer Bioinformatics Grid (CaBIG) Imaging Group:  co-wrote this proposal with colleagues; 
proposal was accepted 

 
Interviews:   
1. U.S. Patent and Trademark Office (CAD group):  Patent Investigator – received an offer 
2. Philips (CAD group):  Research and Development Engineer  
3. Food and Drug Administration (FDA)/NIH: Research Fellow - received and accepted an offer 

• This position is a joint relationship between The FDA’s Center for Devices and Radiological 
Health (CDRH) Division of Imaging and Applied Mathematics (DIAM) and the NIH’s National 
Institute of Biomedical Imaging and Bioengineering (NIBIB) and the NCI.  The PI will study the 
effect of drug treatment upon lung cancer tumors using statistical area measurements.  
Furthermore the PI hopes to continue work in Breast CAD because there are other researchers 
within the DIAM group who have ongoing projects in this area.     

4. Temple University:  Assistant Professor  
5. Morgan State University:  Assistant Professor 
 
Manuscripts:   
The Probabilistic Likelihood and Gradient Vector Flow Algorithms:  A Comparison Study for Dense 
Breast Mass Segmentation (In preparation for submission to Physics and Medicine in Biology) 
 
III.  CONCLUSIONS 

The initial research question for the maximum value experiment was:  Are the computer choice 
statistical values significantly lower than the maximum achievable values given by region growing? 
According to Expert B, the answer is yes for group 1 and 3 traces but no for group 2 trace, for cancer 
cases.  This result is encouraging because it means that it may possible to conclude that the group 2 trace 
is the optimal choice of the possible 200-500 contour choices per mass.  The initial research question for 
the probabilistic-likelihood vs. GVF experiment was:  Are there statistically significant differences 
between the two methods for a set of statistical measurements, and if so, which method achieves better 
results?  We proved with statistical significance that for the current data set the probabilistic-likelihood 
method performed better.  The GVF method worked very well for contours that were well-defined, 
however in our experiment it encountered difficulties for masses with ill-defined borders. 

During this research phase of the award the PI gained a great appreciation for the difficulty of 
segmenting objects with ill-defined borders, and the importance of proper segmentation in the 
development of Computer-Aided Diagnostic systems.  Since shape is such an important factor in 
diagnostic radiology proper segmentation is of paramount importance.  During the technical and 
professional development phase of the award the PI gained immeasurable experience by attending 
meetings in her research area, taking on leadership roles in two activities, engaging in oral presentations 
describing her path through graduate school and through her post-doctoral award, reviewing grants and 
journal submissions, learning proper interviewing techniques, and teaching Computer-Aided Diagnostic 
techniques to audiences with a wide range of educational backgrounds.  During the interview process the 
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post-doctoral experience was well-received by companies and universities alike, and the PI is greatly 
appreciative to have been given this opportunity.  Fortunately, this award enabled her to continue work in 
the medical imaging field and to therefore continue the fight to reduce the cancer mortality rates all over 
the world.              
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V.  APPENDIX 
The appendix of this document contains mansuscripts written during the award period, the manuscript 
abstract for the DOD Era-Of-Hope meeting 2005, and a summary of the GVF algorithm.  
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MASS SEGMENTATION OF DENSE BREASTS ON DIGITIZED MAMMOGRAMS 
 
L. Kinnard1,2, S.-C. B. Lo2, E. Duckett3, E. Makariou2, M.T. Freedman2, and M. Chouikha1 

1Department of Electrical and Computer Engineering, Howard University, Washington, D.C. 
2ISIS Center, Georgetown University Medical Center, Washington, D.C. 

3Advanced Radiology, Glen Burnie, MD 
e-mail:  kinnard@isis.imac.georgetown.edu 
 
In this study a segmentation algorithm based on steepest changes of a probabilistic cost function is 
tested on non-processed and pre-processed dense breast images in an attempt to determine the 
efficacy of pre-processing for dense breast masses.  The pre-processing method is a background 
trend correction (BTC) technique.  
 
The segmentation method used in this study evaluates the steepest changes within a probabilistic 
cost function in an effort to determine the computer segmented contour which is most closely 
correlated with expert radiologist manual traces.  This method segments breast masses by 
combining region growing with probability-based function analysis.  Based on this analysis the 
three best contours are chosen and a final selection is made from these three choices.  Typically, 
the Group 1 trace encapsulates the central portion of the mass, the Group 2 trace encapsulates the 
central mass and borders extending into surrounding tissue (e.g. – spiculations), and the Group 3 
trace encapsulates the area covered by the Group 2 trace and surrounding fibroglandular tissue.  
The BTC method alters intensity values of the Region of Interest (ROI) using a polynomial fitting 
function.  This method was tested on 71 dense cancerous masses.  The computer-segmented 
results were manually traced by two expert radiologists for validation purposes.  The overlap (O), 
accuracy (A), sensitivity (SE), specificity (SP), and Dice Similarity Coefficient (DSC) statistics 
were calculated, where a DSC value greater than 0.7 implies strong agreement between the 
computer segmented result and the expert radiologist trace.  Tables 1-2 contain mean values for 
all statistics, and Figures 1-2 show computer segmented results. 
 
Generally, the BTC method worsened the computer segmented results for Experts A and B 
regarding overlap, DSC, and sensitivity statistics.  These results conflict with visual inspection of 
the BTC processed ROI’s because this method sometimes creates a crater-like effect around the 
mass borders in areas where it was formerly difficult to separate mass borders from surrounding 
tissue.  Further, some light areas are lightened by background trend correction which causes 
areas outside the mass to be joined with areas inside the mass.  This phenomenon subsequently 
causes the region to grow too much.  We feel that the computer-segmentation results can be 
improved by changing the parameters used to determine the intensities that will produce the 
contours that best match expert radiologist traces. The purpose of this work is to facilitate breast 
cancer screening using digitally automated segmentation method capable of locating mass borders 
embedded in dense breasts. 
 

Table 1 – Statistical Results for Non-Processed and Processed ROI’s (Expert A) 
 Expert A (non-processed ROI) Expert A (BTC processed ROI) 
 O A SE SP DSC O A SE SP DSC 
Group 1 0.3 0.73 0.32 0.98 0.44 0.18 0.71 0.19 1 0.28 
Group 2 0.46 0.78 0.56 0.93 0.6 0.34 0.76 0.36 0.99 0.46 
Group 3 0.47 0.77 0.63 0.88 0.64 0.34 0.75 0.44 0.95 0.49 



 
Table 2 – Statistical Results for Non-Processed and Processed ROI’s (Expert B) 

 Expert A (non-processed ROI) Expert A (BTC processed ROI) 
 O A SE SP DSC O A SE SP DSC 
Group 1 0.38 0.82 0.4 0.97 0.52 0.26 0.83 0.27 1 0.38 
Group 2 0.52 0.84 0.65 0.91 0.66 0.44 0.86 0.49 0.99 0.57 
Group 3 0.48 0.81 0.72 0.86 0.63 0.41 0.84 0.57 0.94 0.57 

 

   
Non-processed 

ROI 
Group 1 result Group 2 result Group 3 result Expert A trace Expert B trace 

  

  

BTC-processed 
ROI 

Group 1 result Group 2 result Group 3 result   

Figure 1 – A Cancerous Mass Showing Improved Results Due to BTC Processing 
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Figure 2 – A Cancerous Mass Showing Worsened Results Due to BTC Processing 
 
The U.S. Army Medical Research and Materiel Command under DAMD17-0301-0314 supported 
this work. 



CHAPTER 1. COMPARISON OF SEGMENTATION METHODS:

REGION-GROWING AND GRADIENT VECTOR FLOW

1.1. Introduction and Snake Background

Although our region-growing method achieved better results on the mixed density breast im-

ages, it appears to have worked reasonably well on the chosen set of dense breast images.

During several of my talks and interviews over the past few months I have often been asked if

the method had been compared to another method. In response to these requests I thought

that it would be worth our time to compare the computer results of our method to the results

of Gradient Vector Flow (GVF), a method implemented by Xu and Prince of Johns Hopkins

University. The GVF method is an extension of the snake method, developed by Kass and

Witkin. It differs from the snake because can grow into concave areas (see figure 1.1).

Figure 1.1: The Letter ’U’ on a Homogeneous Background: (a)Traditional Snake (b)GVF Snake

If we define the snake as v(s) = (x(s),y(s)) where x(s) and y(s) are coordinates along

the contour s ∈=[0,1] (see figure 1.2).

The snake is defined as an energy minimizing spline, where the goal is to move it towards

the borders of a Region Of Interest (ROI) by minimizing the energy. Initially the snake is shaped

like a circle, is placed near the borders of the ROI and it shrinks (or expands) until it reaches
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Figure 1.2: Visual of Parametric Representation of Snake

the borders. The energy function to be minimized is defined as:

E∗
snake =

∫ 1

0

Esnake(v(s))ds

=

∫ 1

0

Eint(v(s)) + Eimage(v(s)) + Econ(v(s))ds

(1.1)

where Eint is the internal energy of the snake due to bending, Eimage refers to image forces, and

Econ refers to external constraint forces.

Xu and Prince define typical external energies as:

E1
ext(x, y) = −|OI(x, y)|2 (1.2)

E2
ext(x, y) = −|O(Gσ(x, y) ∗ I(x, y))|2 (1.3)

where I(x, y) is the image, Gσ(x, y) is a 2D Gaussian function, σ is standard deviation, and, O

is the gradient operator.

1.2. Gradient Vector Flow Field

The authors defined an irrotational external force field called the gradient vector flow (GVF)

field. The GVF field points toward the object boundary when it is near to the boundary, but

varies slowly over homogeneous image regions. The process begins by defining an edge map,
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f(x, y), which comes from the image I(x, y). It is stronger near edge boundaries and is defined

as:

f(x, y) = −Ei
ext(x, y) (1.4)

for i = 1 or 2. The field Of has vectors pointing toward the edges, but Of = 0 in homogeneous

regions. The GVF field is defined as the vector field v(x, y) = (u(x, y), v(x, y)) that minimizes

the energy function:

E =

∫∫
µ(u2

x + u2
y + v2

x + v2
y) + |Of |2|v − Of |2dxdy (1.5)

where µ is a regularization parameter that governs a tradeoff between the first and second

terms.
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ABSTRACT 
 
The purpose of this work was to develop an automatic boundary 
detection method for mammographic masses and to observe the 
method’s performance on different four of the five margin groups 
as defined by the ACR, namely, spiculated, ill-defined, 
circumscribed, and obscured. The segmentation method utilized a 
maximum likelihood steep change analysis technique that is 
capable of delineating ill-defined borders of the masses.  Previous 
investigators have shown that the maximum likelihood function 
can be utilized to determine the border of the mass body.  The 
method was tested on 122 digitized mammograms selected from 
the University of South Florida’s Digital Database for Screening 
Mammography (DDSM).  The segmentation results were 
validated using overlap and accuracy statistics, where the gold 
standards were manual traces provided by two expert 
radiologists.  We have concluded that the intensity threshold that 
produces the best contour corresponds to a particular steep 
change location within the likelihood function.  
 

1. INTRODUCTION 
 
In a CADx system, segmentation is arguably one of the most 
important aspects – particularly for masses – because strong 
diagnostic predictors for masses are shape and margin type [2,9].  
The margin of a mass is defined as the interface between the mass 
and surrounding tissue [2].  Furthermore, breast masses can have 
unclear borders and are sometimes obscured by glandular tissue 
in mammograms. A spiculated mass consists of a central mass 
body surrounded by fibrous projections, hence the resulting 
stellate shape.  For the aforementioned reasons, proper 
segmentation - to include the body and periphery - is extremely 
important and is essential for the computer to analyze, and in 
turn, determine the malignancy of the mass in mammographic 
CADx systems.    
Over the years researchers have used many methods to segment 
masses in mammograms.  Petrick [7] et al. developed the Density 
Weighted Contrast Enhancement (DWCE) method, in which 
series of filters are applied to the image in an attempt to extract 
masses.  Comer et al. [1] segmented digitized mammograms into 

homogeneous texture regions by assigning each pixel to one of a 
set of classes such that the number incorrectly classified pixels 
was minimized via Maximum Likelihood (ML) analysis. Li [5] 
developed a method that employs k-means classification to 
classify pixels as belonging to the region of interest (ROI) or 
background. 
Kupinski and Giger developed a method [4], which uses ML 
analysis to determine final segmentation.  In their method, the 
likelihood function is formed from likelihood values determined 
by a set of image contours produced by the region growing 
method.  This method is a highly effective one that was also 
implemented by Te Brake and Karssemeijer in their comparison 
between the discrete dynamic contour model and the likelihood 
method [9].  For this reason we chose to investigate its use as a 
possible starting point from which a second method could be 
developed.  Consequently in our implementation of this work we 
discovered an important result, i.e., the maximum likelihood steep 
change.  It appears that in many cases this method produces 
contour choices that encapsulate important borders such as mass 
spiculations and ill-defined borders.   
 

2. METHODS 
 

2.1 Initial Contours 
As an initial segmentation step, we followed the overall region 
similarity concept to aggregate the area of interest [1, 4].  Used 
alone, a sequence of contours representing the mass is generated; 
however, the computer is not able to choose the contour that is 
most closely correlated with the experts’ delineations.  
Furthermore, we have devised an ML function steep change 
analysis method that chooses the best contour that delineates the 
mass body as well as its extended borders, i.e., extensions into 
spiculations and areas in which the borders are ill-defined or 
obscured.  This method is an extension of the method developed 
by Kupinski and Giger [4] that uses ML function analysis to 
select the contour which best represents the mass, as compared to 
expert radiologist traces.  We have determined that this technique 
can select the contour that accurately represents the mass body 
contour for a given set of parameters; however, further analysis 
of the likelihood function revealed that the computer could 
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choose a set of three segmentation contour choices from the 
entire set of contour choices, and then make a final decision from 
these three choices.    
The algorithm can be summarized in several steps.  Initially, we 
use an intensity based thresholding scheme to generate a 
sequence of grown contours (Si), where gray value is the 
similarity criterion.  The image is also multiplied by a 2D 
trapezoidal membership function (2D shadow), whose upper base 
measures 40 pixels and lower base measures 250 pixels (1 pixel = 
50 microns). The image to which the shadow has been applied is 
henceforth referred to as the "fuzzy" image.  The original image 
and its fuzzy version were used to compute the likelihood of the 
mass’s boundaries.   The computation method is comprised of 
two components for a given boundary: (1) formulation of the 
composite probability and (2) evaluation of likelihood.   
In addition, we chose to aggregate contours using the original 
image. This accounts for the major difference from that 
implemented by the previous investigators. Since smoother 
contours were not used, the likelihood function showed greater 
variations.  In many situations, the greatest variations occurred 
when there was a sudden increase of the likelihood, and this was 
strongly correlated with the end of the mass border growth.  This 
phenomenon would be suppressed if the fuzzy image was used to 
generate the contours.  The fuzzy image was used mainly to 
construct the likelihood function.   
 
2.2 Composite Probability Formation 
For a contour (Si), the composite probability (Ci) is calculated:                  
                 ( )( ) ( )( )iiiiii SyxmpSyxfpSC ,, ×=          (1) 

The quantity fi(x,y) is the area to which the 2D shadow has been 
multiplied, p(fi(x,y)|Si) is the probability density function of the 
pixels inside Si where ‘i’ is the region growing step associated 
with a given intensity threshold.  The quantity mi(x,y) is the area 
outside Si (non-fuzzy), and p(mi(x,y)|Si) is the probability density 
function of the pixels outside Si.  Next we find the logarithm of 
the composite probability of the two regions, Ci: 

( ) ( )( )( ) ( )( )( )iiiiii SyxmpSyxfpSCLog ,log,log +=     (2) 

 
2.3 Evaluation of Likelihood Function 
The likelihood that the contour represents the fibrous portion of 
the mass, i.e., mass body is determined by assessing the maximum 
likelihood function: 

( )( ) niSSCLog iii ,...1,;maxarg =           (3)                                                

Equation (3) intends to find the maximum value of the 
aforementioned likelihood values as a function of intensity 
threshold.  It has been assessed (also by other investigators [4]) 
that the intensity value corresponding to this maximum likelihood 
value is the optimal intensity needed to delineate the mass body 
contour.  However, in our implementation it was discovered that 
the intensity threshold corresponding to the maximum likelihood 
value confines the contour to the mass body.   In our study many 
of these contours did not include the extended borders.  We, 
therefore, hypothesize that the contour represents the mass’s 
extended borders may well be determined by assessing the 
maximum changes of the likelihood function, i.e., locate the 
steepest likelihood value changes within the function:    

( )( ) niSSCLog
di

d
iii ,,1,; K=               (4) 

Based on this assumption, we have carefully analyzed the 
behavior of maximum likelihood function. The analysis reveals 
that we have successfully discovered that the most accurate mass 
delineation is usually obtained by using the intensity value 
corresponding to the first or second steep change locations within 
the likelihood function immediately following the maximum 
likelihood value on the likelihood function. 
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Figure 1:  A likelihood function with steep change indicators 

 
2.4 Steep change definition 
The term "steep change" is rather subjective and can defined as a 
location between two or more points in the function where the 
likelihood values experience a significant change.  In some cases 
the likelihood function increases at a slow rate. The algorithm 
design accounts for this issue by calculating the difference 
between likelihood values in steps over several values and 
comparing the results to two thresholds.  The difference equation 
is given by:   

( ) ( ) ( )( ) Nttwzfwtzfth ,,0,1 K=+−−−=      (5) 

where f is the likelihood function, z is the maximum intensity, w is 
the width of the interval over which the likelihood differences are 
calculated (e.g. – for w=7 differences are calculated every 7 
points), and N is the total number of points in the searchable area 
divided by w.  If the calculation in question yields a value greater 
than or equal to a given threshold, then the intensity 
corresponding to this location is considered to be a steep change 
location.  The threshold algorithm occurs as follows: 
 
If (h(t)ML > MLT1);  t=0,…,m 
Then choice 1 = intensity where that condition is satisfied 
If (h(t)ML > MLT2);  t=m,…,z 
Then choice 2 = intensity where that condition is satisfied 
 
where h(t)ML is the steep change value given by equation (5), 
MLT1 and MLT2 are pre-defined threshold values, m is the 
location in the function where the choice 1 condition is satisfied, 
and z is the location in the function where the choice 2 condition 
is satisfied.  Once the condition is satisfied for the first threshold 
value (MLT1) then its corresponding intensity value is used to 
produce the segmentation contour for the first steep change 
location.  Once the condition is satisfied for MLT2 then its 
corresponding intensity value is used to produce the segmentation 
contour for the second steep change location. 
 
2.5 Validation 
The segmentation method was validated on the basis of overlap 
and accuracy [8,10]: 

FPTPFN

TP

NNN

N
Overlap

++
=              (6) 

Group 2 
(first steep change location) 

Group 1 
(max likelihood location) 

Group 3 
(second steep change location) 
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NNNN

NN
Accuracy

+++
+=     (7)                               

 
where NTP is the true positive fraction, NTN true negative fraction, 
NFP is the false positive fraction, and NFN is the false negative 
fraction.  The gold standards used for the validation study were 
mass contours, which have been traced by expert radiologists.   
Our experiments produced contours for the intensity values 
resulting from three locations within the likelihood functions:  (1) 
The intensity for which a value within the likelihood function is 
maximum (group 1 contour) (2) The intensity for which the 
likelihood function experiences its first steep change (group 2 
contour) and (3) The intensity for which the likelihood function 
experiences its second steep change (group 3 contour).  We have 
observed that the intensity for which the likelihood function 
experiences its first steep change produces the contour trace that 
is most highly correlated with the gold standard traces, regarding 
overlap and accuracy.     

 
3. EXPERIMENTS AND RESULTS 

 
Here we describe the database used, describe the experiments, 
provide visual results obtained by the algorithm, as well as report 
the results obtained by the ANOVA test.   
 
3.1 Database  
For this study, a total of 122 masses were chosen from the 
University of South Florida's Digital Database for Screening 
Mammography (DDSM) [3].  The films were digitized at 
resolutions of 43.5 or 50 µm's using either the Howtek or 
Lumisys digitizers, respectively.  The DDSM cases have been 
ranked by expert radiologists on a scale from 1 to 5, where 1 
represents the most subtle masses and 5 represents the most 
obvious masses.  The images were of varying subtlety ratings.  
The first set of expert traces was provided by an attending 
physician of the GUMC, and is hereafter referred to as the Expert 
A traces.  The second set of expert traces was provided by the 
DDSM, and is hereafter referred to as the Expert B traces.  
 
3.2 Experiments and Results 
As mentioned previously, the term “steep change” is very 
subjective and therefore a set of thresholds needed to be set in an 
effort to define a particular location within the likelihood function 
as a “steep change location”.  For this study the following 
thresholds were experimentally chosen: MLT1=1800, 
MLT2=1300, where MLT1= threshold for steep change location 1 
for the likelihood function, and MLT2 = threshold for steep 
change location 2 for the likelihood function.  We performed a 
number of experiments in an effort to prove that the intensity for 
which the likelihood function experiences the first steep change 
location produces the contour trace, which is most highly 
correlated with the gold standard traces regarding overlap and 
accuracy.   
First we present segmentation results for two malignant cases 
followed segmentation results for two benign cases.  Each figure 
contains an original image, traces for Experts A and B, and 
computer segmentation results for groups 1, 2, and 3.  Second, 
we present data that plots the mean values for various margin 
groups for both overlap and accuracy measurements.  The plots 

present data for the spiculated and ill-defined groups of malignant 
masses, and ill-defined and circumscribed groups of benign 
masses.  Data was not presented for the other categories because 
there was not a sufficient amount of cases.  
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Figure 2:  Segmentation Results:  Spiculated Malignant Mass 
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Figure 3:  Segmentation Results:  Ill-defined Malignant Mass 
 

   
Original 

ROI 
Expert A 

Trace 
Expert B 

Trace 

   

 
 
 
Malignant mass 
with obscured 
margins 
(subtlety = 4) 

 

Group 1 
Result 

Group 2 
Result 

Group 3 
Result 

Figure 4:  Segmentation Results:  Obscured Malignant Mass 
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Figure 5:  Segmentation Results:  Ill-defined Benign Mass 
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Figure 6:  Segmentation Results:  Circumscribed Benign Mass 
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Figure 7:  Mean Measurement Values (Malignant Masses) 
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Figure 8:  Mean Measurement Values (Benign Masses) 

 
4. DISCUSSION AND CONCLUSION 

 
The visual results (see Figures 2-6) reveal that the group 2 trace 
appears to delineate the masses better than the group 1 and group 
3 contours in most cases.  Visually, it appears that the method 
has performed equally well on all margin groups.  This is an 
encouraging result because some of the more difficult masses to 
segment are typically those that are spiculated, obscured, and 
those that have ill-defined borders.  The plots shown in Figures 7-
8 confirm that the group 2 trace performs better than the other 

groups on the basis of overlap and accuracy for all margin 
groups, therefore supporting our visual observations.    
In future work, a worthwhile study would be to test gather more 
data for all margin groups in an effort to see if the various groups 
require different parameter values to maximize the algorithm’s 
robustness. Our ultimate goal is to optimize its performance for 
those masses falling in the ill-defined and obscured margin groups 
because segmentation of masses falling into those categories is 
exceedingly difficult.      
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ABSTRACT

In this study, a segmentation algorithm based on the steepest changes of a probabilistic cost function was tested
on non-processed and pre-processed dense breast images in an attempt to determine the efficacy of pre-processing
for dense breast masses. Also, the inter-observer variability between expert radiologists was studied. Background
trend correction was used as the pre-processing method. The algorithm, based on searching the steepest changes
on a probabilistic cost function, was tested on 107 cancerous masses and 98 benign masses with density ratings
of 3 or 4 according to the American College of Radiology’s density rating scale. The computer-segmented results
were validated using the following statistics: overlap, accuracy, sensitivity, specificity, Dice similarity index, and
kappa. The mean accuracy statistic value ranged from 0.71 to 0.84 for cancer cases and 0.81 to 0.86 for benign
cases. For nearly all statistics there were statistically significant differences between the expert radiologists.

Keywords: mass segmentation, inter-observer variability, digitized mammograms

1. INTRODUCTION

In the United States, breast cancer accounts for one-third of all cancer diagnoses among women and it has the
second highest mortality rate of all cancer deaths in women.1 Several studies have shown that only 13% - 29%
of suspicious masses are determined to be malignant,2–4 indicating that there are high false positive rates for
biopsied breast masses. A higher predictive rate is anticipated by combining the mammographer’s interpretation
and the computer analysis. Other studies have shown that 7.6% - 14% of the patients have mammograms that
produce false negative diagnoses.5, 6 More accurate prediction can be achieved by combining a mammographer’s
interpretation with that of a Computer Assisted Diagnosis (CADx) system, which can analyze masses for key
diagnostic indicators such as shape. For example, many malignant masses have ill-defined, and/or spiculated
borders and many benign masses have well-defined, rounded borders. Furthermore, the borders of breast masses
are sometimes obscured in mammograms by glandular tissue. A CADx system can help physicians identify these
areas more accurately through a process called segmentation in which the computer automatically separates a
region of interest from surrounding tissue.

Mass segmentation has prompted the development of many techniques and it continues to be one of the most
closely studied areas in CADx today. Te Brake and Karssemeijer7 have implemented a discrete dynamic contour
model, a method similar to snakes, that begins as a set of vertices connected by edges (initial contour) and
grows subject to internal and external forces. Li8 has developed a method that employs k-means classification
to assign pixels to the region of interest (ROI) or to the background. Petrick et al.9 have developed the Density
Weighted Contrast Enhancement (DWCE) method, in which a series of filters are applied to the image in an
attempt to extract masses. Comer et al.10 have utilized an EM technique to segment digitized mammograms into
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homogeneous texture regions by assigning each pixel was to one of a set of classes so that the number incorrectly
classified pixels is minimized. Kupinski and Giger11 have developed a method, that combines region growing with
probability analysis to determine final segmentation. In this method, the probability-based function is formed
from a specific composed probability density function that is determined by a set of image contours produced
by the region growing method.

2. METHODS

2.1. Segmentation and Pre-processing

Our method evaluates the steepest changes within a probabilistic cost function in an effort to determine the
computer segmented contour that is most closely correlated with expert radiologist manual traces.11, 12 This
method segments breast masses by combining region growing with probability-based cost function analysis. For
each cost function there are a number of steepest changes in likelihood (see Figures 2e and 3e), where a steepest
change location is defined by a set of thresholds. In most cases the trace which is most likely to enclose the mass in
its entirety is produced by the intensity corresponding to that steepest change location. For example, a steepest
change location in Figure 2e is located at the intensity = 3100. The intensity corresponding to the maximum
value on the cost likelihood function is most likely to enclose the mass’s central body. Based on this analysis
the three best contours are chosen and the computer makes a final selection from these three choices. Typically,
the Group 1 trace encapsulates the central portion of the mass (intensity corresponds to maximum value on
likelihood function), the Group 2 trace encapsulates the central mass and borders extending into surrounding
tissue (intensity corresponds to first steepest change location), and the Group 3 trace encapsulates the area
covered by the Group 2 trace and surrounding fibroglandular tissue (intensity corresponds to second steepest
change location).

The masses used in this study were exceedingly difficult to segment due to the surrounding dense tissue. We
therefore thought that a contrast enhancement method - background trend correction in this experiment - would
help the segmentation process. The background correction technique is based on a two-dimensional third order
polynomial fit given by:

BC(x, y) =
n∑

j=0

ajx
sj ytj , (1)

where n=3. Hence, the corrected image (fc(x, y)) is obtained by subtracting the background trend (BC(x, y))
from the original image f(x, y):

fc(x, y) = f(x, y)−BC(x, y). (2)

2.2. Statistical Methods

All masses were manually traced by two expert radiologists and the overlap, accuracy, sensitivity, specificity,
Dice Similarity Index (DSI), and kappa (κ) statistic were calculated.13, 14 All statistics are formulated using the
following terms: NTP = the number of true positive pixels (pixels that are actually mass, NTN = the number of
true negative pixels (pixels that are actually background), NFP = the number of pixels the computer interprets
as mass which are actually background, and NFN = the number of pixels the computer interprets as background
which are actually mass (see Figure 1).

Overlap =
NTP

NTP + NFP + NFN
, (3)

Accuracy =
NTP + NTN

NTP + NTN + NFP + NFN
, (4)

Sensitivity =
NTP

NTP + NFN
, (5)



Figure 1. This figure is an example of a mass traced by an expert radiologist superimposed with the computer interpre-
tation

Specificity =
NTN

NTN + NFP
, (6)

DSI =
2NTP

NFN + 2NTP + NFP
, (7)

κ =
2(NTP NTN + NFP NFN )

(NTP + NFN )(NFN + NTN ) + (NTP + NFP )(NFP + NTN )
. (8)

Specifically, Landis and Koch15 have developed a six-point scale with which the kappa statistic can be analyzed
(see table 1).

Table 1. Six-point Scale Indicating the Performance of the Kappa Statistic.

κ Strength of Agreement

< 0.00 Poor

0.00 - 0.20 Slight

0.21 - 0.40 Fair

0.41 - 0.60 Moderate

0.61 - 0,80 Substantial

0.81 - 1.00 Almost Perfect

The statistics have values ranging from 0 to 1, where a value of 0 indicates no agreement and a value
of 1 indicates perfect agreement. While these statistics measure the performance of segmentation algorithms
reasonably well, it is possible that the algorithm in question can be biased toward one expert radiologist. To
examine this issue we used a two-tailed T-test which was performed using the SPSSTM statistical package.



Table 2. T-test Results for all Statistics: Expert A vs. Expert B (Non-Processed Cancerous Masses)

Hypothesis P-value
(Group 1)

P-value
(Group 2)

P-value
(Group 3)

Difference between Experts A and B (overlap) 0.000 0.000 NS

Difference between Experts A and B (accuracy) 0.000 0.000 0.000

Difference between Experts A and B (sensitivity) 0.000 0.000 0.000

Difference between Experts A and B (specificity) NS 0.000 0.000

Difference between Experts A and B (DSI) 0.000 0.000 NS

Difference between Experts A and B (κ) 0.000 0.000 0.000

Table 3. Mean (µ) Values for all Statistics: Experts A and B (Non-Processed Cancerous Masses)

Statistic µ-value
(Exp. A,
Group 1)

µ-value
(Exp. B,
Group 1)

µ-value
(Exp. A,
Group 2)

µ-value
(Exp. B,
Group 2)

µ-value
(Exp. A,
Group 3)

µ-value
(Exp. B,
Group 3)

Overlap 0.28 0.36 0.46 0.52 0.47 0.49

Accuracy 0.72 0.82 0.78 0.85 0.77 0.82

Sensitivity 0.30 0.39 0.54 0.65 0.61 0.72

Specificity 0.98 0.98 0.94 0.92 0.89 0.86

DSI 0.41 0.51 0.60 0.66 0.62 0.64

κ 0.32 0.43 0.48 0.57 0.47 0.53

2.3. Database and Experiments

The cases for this work were obtained from the University of South Florida’s Digital Database for Screening
Mammography (DDSM).16 The densities of all cases were rated using the American College of Radiology
(ACR) scale which ranges from 1 to 4. A breast containing a great deal of dense tissue would receive a rating
of 4. Approximately two-thirds of the cases used in this work received a density rating of 3 while the remaining
cases received a density rating of 4.

We performed two experiments in which we calculated the statistics between the computer results and manual
traces from both expert radiologists. In the first experiment the masses were unprocessed and in the second
experiment they were processed using background trend correction.

3. RESULTS

3.1. Statistical Results

Tables 2- 9 show p-values for the t-tests which analyzed inter-observer variability as well as the mean values of
all statistics for both expert radiologists. The significance level is p < 0.05. A table entry whose value is 0.000
implies that there the p-value for a particular test was less than 0.000 and a table entry of “NS” implies that
there was no significant difference for a particular test.



Table 4. T-test Results for all Statistics: Expert A vs. Expert B (Non-Processed Benign Masses)

Hypothesis P-value
(Group 1)

P-value
(Group 2)

P-value
(Group 3)

Difference between Experts A and B (overlap) 0.000 0.002 NS

Difference between Experts A and B (accuracy) 0.000 0.007 0.040

Difference between Experts A and B (sensitivity) 0.000 0.000 0.000

Difference between Experts A and B (specificity) NS 0.025 NS

Difference between Experts A and B (DSI) 0.000 0.003 NS

Difference between Experts A and B (κ) 0.000 0.001 NS

Table 5. Mean (µ) Values for all Statistics: Experts A and B (Non-Processed Benign Masses)

Statistic µ-value
(Exp. A,
Group 1)

µ-value
(Exp. B,
Group 1)

µ-value
(Exp. A,
Group 2)

µ-value
(Exp. B,
Group 2)

µ-value
(Exp. A,
Group 3)

µ-value
(Exp. B,
Group 3)

Overlap 0.32 0.36 0.49 0.52 0.48 0.49

Accuracy 0.81 0.84 0.84 0.86 0.81 0.83

Sensitivity 0.36 0.40 0.60 0.66 0.72 0.77

Specificity 0.98 0.98 0.94 0.93 0.86 0.86

DSI 0.46 0.51 0.63 0.66 0.63 0.63

κ 0.40 0.45 0.55 0.59 0.52 0.53

Table 6. T-test Results for all Statistics: Expert A vs. Expert B (Background Trend Corrected Cancerous Masses)

Hypothesis P-value
(Group 1)

P-value
(Group 2)

P-value
(Group 3)

Difference between Experts A and B (overlap) 0.000 0.000 0.000

Difference between Experts A and B (accuracy) 0.000 0.000 0.000

Difference between Experts A and B (sensitivity) 0.000 0.000 0.000

Difference between Experts A and B (specificity) NS 0.024 0.003

Difference between Experts A and B (DSI) 0.000 0.000 0.000



Table 7. Mean (µ) Values for all Statistics: Experts A and B (Background Trend Corrected Cancerous Masses)

Statistic µ-value
(Exp. A,
Group 1)

µ-value
(Exp. B,
Group 1)

µ-value
(Exp. A,
Group 2)

µ-value
(Exp. B,
Group 2)

µ-value
(Exp. A,
Group 3)

µ-value
(Exp. B,
Group 3)

Overlap 0.19 0.26 0.38 0.47 0.38 0.44

Accuracy 0.73 0.83 0.78 0.87 0.77 0.85

Sensitivity 0.20 0.27 0.41 0.52 0.49 0.61

Specificity 1.00 1.00 0.99 0.99 0.94 0.93

DSI 0.29 0.38 0.51 0.60 0.53 0.59

Table 8. T-test Results for all Statistics: Expert A vs. Expert B (Background Trend Corrected Benign Masses)

Hypothesis P-value
(Group 1)

P-value
(Group 2)

P-value
(Group 3)

Difference between Experts A and B (overlap) 0.000 0.000 0.002

Difference between Experts A and B (accuracy) 0.001 0.002 0.006

Difference between Experts A and B (sensitivity) 0.000 0.000 0.000

Difference between Experts A and B (specificity) NS 0.049 0.010

Difference between Experts A and B (DSI) 0.000 0.000 0.003

Table 9. Mean (µ) Values for all Statistics: Experts A and B (Background Trend Corrected Benign Masses)

Statistic µ-value
(Exp. A,
Group 1)

µ-value
(Exp. B,
Group 1)

µ-value
(Exp. A,
Group 2)

µ-value
(Exp. B,
Group 2)

µ-value
(Exp. A,
Group 3)

µ-value
(Exp. B,
Group 3)

Overlap 0.21 0.24 0.41 0.45 0.44 0.47

Accuracy 0.80 0.83 0.84 0.87 0.83 0.85

Sensitivity 0.21 0.24 0.44 0.48 0.56 0.62

Specificity 1.00 1.00 0.99 0.99 0.94 0.94

DSI 0.31 0.34 0.53 0.57 0.59 0.62



3.2. Visual Results

Figures 2 - 3 contain the following parts: (a) original image (b) cropped ROI and its computer segmented results
(non-processed image) (c) cropped ROI and its computer segmented results (background trend corrected image)
(d) manually traced expert delineations and (e) cost likelihood functions. Again, the Group 1 trace encapsulates
the central portion of the mass (intensity corresponds to maximum value on likelihood function), the Group
2 trace encapsulates the central mass and borders extending into surrounding tissue (intensity corresponds to
first steepest change location), and the Group 3 trace encapsulates the area covered by the Group 2 trace and
surrounding fibroglandular tissue (intensity corresponds to second steepest change location).



Figure 2. Cancerous mass: (a) original image (b) cropped ROI and its computer segmented results (non-processed
image) (c) cropped ROI and its computer segmented results (background trend corrected image) (d) manually traced
expert delineations and (e) cost likelihood functions



Figure 3. Benign mass: (a) original image (b) cropped ROI and its computer segmented results (non-processed image)
(c) cropped ROI and its computer segmented results (background trend corrected image) (d) manually traced expert
delineations and (e) cost likelihood functions



4. DISCUSSION AND CONCLUSION

As the visual and statistical results demonstrate, the background trend correction pre-processing method does
not seem to have improved the performance of the automated segmentation algorithm. From a visual standpoint,
background trend correction seems to have caused some areas inside the masses to become darker, and thus, the
region growing portion of the algorithm would not grow into these areas. Simultaneously, for some cases this
darkening effect caused a sharper contrast between the mass and surrounding tissue, making the mass boundaries
easier to see.

For most statistics there were statistically significant differences between both radiologists. In general, the
group 2 and group 3 traces achieved better performance values than the group 1 traces for both radiologists. The
mean values for Expert B were greater than those for Expert A, which reveals that there was stronger agreement
between the computer and Expert B than between the computer and Expert A.

Background trend correction causes the likelihood cost functions to incur more steepest changes as opposed
to the cost likelihood functions for the non-processed images, which are typically smooth. In turn, the computer
makes its decisions earlier in the steep change searching process, consequently, the mass contours encapsulate
smaller areas. In future work it will be necessary to change the steepest change parameters to account for the
change. The inter-observer variability implies that in future work we should also investigate the possibility of
obtaining a consensus opinion between the two existing radiologists. An alternative method would obtain more
radiologist traces.
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ABSTRACT 
 
Validation of breast mass image segmentation algorithms is a key 
component of their success.  However, in cases where the masses 
are embedded in dense tissue it is difficult to obtain consistent gold 
standard traces among expert radiologists.  In this study we 
examined inter-observer variability by performing ANOVA tests 
(p<0.05) on a set of three segmentation traces, in efforts to decide 
upon the best trace.  We used the overlap, accuracy, sensitivity, 
specificity, and Dice Similarity Index to validate the traces and 
discovered statistically significant results between one trace and 
the second and third traces.  The p-values ranged between 1.4x10-2 
and 4.86x10-25.        
 

1. INTRODUCTION 
 
One of the greatest challenges in validation of segmentation 
algorithms is inter-observer variability among gold standard traces.  
Typical studies use one to three observers when validating their 
algorithms, and strong agreement between these observers is 
desirable.  Sahiner et. al. compared an automated breast mass 
segmentation method to manual traces of two expert radiologists 
and analyzed the degree of agreement between the two observers 
[1].  They calculated the minimum Euclidean distance, the 
Haussdorf distance, and the overlap measure and determined if the 
difference between the computer-segmented trace and the expert 
trace fell within the range of variation between observers.  
Pasquerault et. al. compared three segmentation algorithms for 
mammographic microcalcifications with an expert radiologist and 
three experienced scientists by independently rating the accuracy 
of each algorithms and then determining which method was 
preferred by each expert [2].  In both evaluation studies, intra-
observer variability was addressed by allowing the observers to 
randomly view cases more than once.  Zheng et. al. compared the 
performance of three digitized mammography CAD schemes after 
the images in question were rotated and resampled [3].  
Specifically, their multiple image-based scheme matched regions 
by comparing the distance between centers of gravity of two 
Regions Of Interest (ROI) and the maximum radial length of either 
ROI.  Zhou et. al.  developed an automated nipple identification 
system, where two expert radiologists identified nipple locations 
on a set of digitized mammograms and the images either contained 
clearly identifiable nipples or invisible nipples [4].  For the 
invisible nipple locations one radiologist estimated their locations 

once, a second radiologist estimated their locations twice, and the 
three estimates were averaged.    
Strong agreement between observers can be difficult to achieve 
due to an ROI’s unclear borders (see Figure 1).  Specifically, dense 
breast masses on digitized mammograms are difficult to observe 
and are therefore difficult to trace. It is also important that the 
segmentation algorithm is not biased toward a particular observer 
so we must incorporate as many observers as possible into a 
validation study.  In this work we attempted to determine optimal 
computer segmentation masses for dense breast masses by 
studying inter-observer variability between a set of three expert 
radiologists.   
 
 

 

 

 Dense Breast Mass  

 
Expert A Trace Expert B Trace Expert C Trace 

Figure 1:  Malignant Dense Breast Image With  
Three Expert Traces 

 
2. METHOD 

 
In previous work -- and in the current study -- we utilized a 
segmentation algorithm which combines region growing with 
likelihood function analysis [5,6].  This method narrows a large set 
of computer-segmented contours to three possible choices, and the 
ultimate goal is to choose the best contour from these three choices.  
In this study we are observing inter-observer variability between 
experts.  We visually observed moderate to strong agreement 
between a pair of observers on breast masses with easily 
identifiable borders, however, for dense breast cases we observed 
that the agreement was not as strong.  Furthermore, a colleague 



pointed out large differences between observers and cited these 
differences as a critical area to be addressed in subsequent studies.  
We have performed a set of intra-observer studies that used the 
Analysis of Variance (ANOVA) test to compare the three final 
computer-segmented results to manual traces provided by three 
expert radiologists.  The database, validation methods, and 
experiments are described in the next several sections. 
 
2.1. Database  
The database is a set of 124 malignant cases and 135 benign cases 
provided by the University of South Florida's Digital Database for 
Screening Mammography [7].  A set of expert radiologists 
manually traced the ROIs, where the first two observers were 
expert radiologists from Advanced Radiologists corporation 
(Expert A) and the Georgetown University Medical Center (Expert 
B), respectively.  The third radiologist trace data (Expert C) was 
provided by the DDSM project, a collaborative effort between 
several hospitals.  It appears that the DDSM expert data was 
provided by several expert radiologists, as some traces are tightly 
drawn around the ROI and other traces are not tightly drawn 
around the ROI.  Since Experts A and B were instructed to trace 
the ROI borders as closely as possible, it was necessary to use the 
tightly drawn DDSM contours for the current study.  There were 
approximately 40 DDSM tightly drawn traces for malignant 
masses and 26 tightly drawn traces for benign masses.      
The three computer-segmented traces are henceforth referred to as:  
a) Group 1 trace:  the trace encapsulating the central mass body, b) 
Group 2 trace:  the trace encapsulating the central mass body and 
its extended borders (spiculations and projections, for example), 
and c) Group 3 trace:  the trace encapsulating the mass body, its 
extended borders, and surrounding fibroglandular tissue which 
may or may not belong to the mass. 
 
2.2. Validation 
The segmentation method was validated on the basis of overlap, 
accuracy, sensitivity, specificity, and Dice Similarity Index (DSI) 

[8, 9]:  
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where NTP is the true positive fraction, NTN true negative fraction, 
NFP is the false positive fraction, and NFN is the false negative 
fraction.  The gold standards used for the validation study were 
mass contours, which have been traced by expert radiologists. 
 
2.3. Experiments 
The current study attempts to determine the optimal contour from a 
set of three contour choices determined by an automated 
segmentation method.   We performed a set of intra-observer 
studies, which compared the computer-segmentation trace to each 

individual expert.  Specifically, we made the following 
comparisons for Experts A, B and C:  (a) group 1 vs. group 2 (b) 
group 2 vs. group 3 and (c) group 1 vs. group 3.  Next we 
performed a set of inter-observer experiments, which compared the 
preferences of each observer.  Specifically, for groups 1, 2, and 3:  
(a) Expert A vs. Expert B (b) Expert B vs. Expert C, and (c) Expert 
A vs. Expert C.     
 

3. RESULTS 
 

The experiments have been performed for both malignant and 
benign masses, however, in the interest of brevity results are 
shown for the malignant masses.  Tables 1-6 contain p-values 
(p<0.05) for the ANOVA tests of the intra-observer experiments 
described in section 2.3, and mean values for all statistical 
measurements.  In cases where the result was not statistically 
significant, the table entry reads “NS”.  Tables 7-12 contain p-
values (p<0.05) for the ANOVA tests of the intra-observer 
experiments described in section 2.3, and mean values for all 
statistical measurements.  In cases where the result was not 
statistically significant, the table entry reads “NS”.  Figures 2-5 
show a computer segmented results and expert traces for four 
malignant masses embedded in dense tissue. 
3.1 Statistical Results 
Table 1:  Expert A Intra-observer Experiment, Malignant Cases 
 Gr. 1 vs. 

Gr. 2 
Gr. 2 vs.  
Gr. 3 

Gr. 1 vs.  
Gr. 3 

Overlap 5.32x10-11 NS 4.09x10-15 
Accuracy 1.4x10-2 NS 2.2 x10-2 
Sensitivity 4.48x10-14 8.4 x10-3 4.86x10-25 
Specificity 8.1 x10-3 2.5 x10-3 1.19x10-10 
DSI 1.03x10-10 NS 1.82x10-15 
 

Table 2:  Mean Measurement Values for all Statistical 
Measurements (Expert A) 

 Group 1 Group 2 Group 3 
Overlap 0.28 0.44 0.46 
Accuracy 0.71 0.76 0.76 
Sensitivity 0.30 0.52 0.60 
Specificity 0.98 0.94 0.89 
DSI 0.41 0.59 0.62 
 

Table 3:  Expert B Intra-observer Experiment, Malignant Cases 
 Gr. 1 vs. 

Gr. 2 
Gr. 2 vs.  
Gr. 3 

Gr. 1 vs.  
Gr. 3 

Overlap 6.55x10-8 NS 4.99x10-6 
Accuracy NS NS NS 
Sensitivity 1.63x10-15 2.12 x10-2 6.63x10-24 
Specificity 8.43x10-5 1.12 x10-3 3.77x10-13 
DSI 1.03x10-7 NS 2.77x10-6 
 

Table 4:  Mean Measurement Values for all 
Statistical Measurements (Expert B) 

 Group 1 Group 2 Group 3 
Overlap 0.36 0.50 0.47 
Accuracy 0.81 0.83 0.81 
Sensitivity 0.39 0.63 0.70 
Specificity 0.97 0.92 0.86 
DSI 0.51 0.64 0.62 



Table 5:  Expert C Intra-observer Experiment, Malignant Cases 
 Gr. 1 vs. 

Gr. 2 
Gr. 2 vs.  
Gr. 3 

Gr. 1 vs.  
Gr. 3 

Overlap 1.37x10-5 NS 1.68x10-5 
Accuracy NS NS NS 
Sensitivity 1.24x10-6 2.62 x10-2 3.74x10-12 
Specificity 3.67x10-2 1.54 x10-3 2.57x10-6 
DSI 2.25x10-5 NS 2.14x10-5 
 

Table 6:  Mean Measurement Values for all  
Statistical Measurements (Expert C) 

 Group 1 Group 2 Group 3 
Overlap 0.32 0.48 0.47 
Accuracy 0.79 0.83 0.81 
Sensitivity 0.33 0.53 0.61 
Specificity 0.98 0.96 0.89 
DSI 0.47 0.63 0.63 
 

Table 7:  Inter-observer Experiment Results: 
Group 1 Trace Malignant Masses 

 Exp. A vs. 
Exp. B 

Exp. B vs. 
Exp. C 

Exp. A vs. 
Exp. C 

Overlap 8.10 x10-3 3.76 x10-3 NS 
Accuracy 3.43 x10-3 1.87 x10-2 NS 
Sensitivity 8.43 x10-3 2.66 x10-3 NS 
Specificity NS NS NS 
DSI 8.53 x10-3 8.59 x10-3 NS 
 

Table 8:  Inter-observer Mean Measurement Values for   
Group 1 Traces (Malignant Masses) 

 Expert A Expert B Expert C 
Overlap 0.33 0.44 0.33 
Accuracy 0.77 0.86 0.80 
Sensitivity 0.35 0.46 0.34 
Specificity 0.98 0.98 0.99 
DSI 0.47 0.59 0.48 
 

Table 9:  Inter-observer Experiment Results:   
Group 2 Trace Malignant Masses 

 Exp. A vs. 
Exp. B 

Exp. B vs. 
Exp. C 

Exp. A vs. 
Exp. C 

Overlap 9.90 x10-3 3.68 x10-3 NS 
Accuracy 2.62 x10-3 1.41 x10-2 NS 
Sensitivity 7.24 x10-3 1.28 x10-3 NS 
Specificity NS NS NS 
DSI 8.11 x10-3 6.91 x10-3 NS 
 

Table 10:  Inter-observer Mean Measurement Values for   
Group 2 Traces (Malignant Masses) 

 Expert A Expert B Expert C 
Overlap 0.48 0.59 0.48 
Accuracy 0.81 0.89 0.84 
Sensitivity 0.54 0.68 0.53 
Specificity 0.96 0.95 0.96 
DSI 0.62 0.73 0.63 
 
 
 

Table 11:  Inter-observer Experiment Results:   
Group 3 Trace Malignant Masses 

 Exp. A vs. 
Exp. B 

Exp. B vs. 
Exp. C 

Exp. A vs. 
Exp. C 

Overlap NS NS NS 
Accuracy 3.61 x10-2 NS NS 
Sensitivity 4.68 x10-3 2.37 x10-4 NS 
Specificity NS NS NS 
DSI NS NS NS 
 

Table 12:  Inter-observer Mean Measurement Values for   
Group 3 Traces (Malignant Masses) 

 Expert A Expert B Expert C 
Overlap 0.48 0.53 0.47 
Accuracy 0.80 0.85 0.81 
Sensitivity 0.648 0.78 0.62 
Specificity 0.90 0.88 0.89 
DSI 0.63 0.68 0.63 
 
3.2 Visual Results 
 

 
Original Mass Group 1 Trace Group 2 Trace Group 3 Trace

 

 
 Expert A Expert B Expert C 

Figure 2:  Malignant Mass Image with  
Computer Segmented Results and Expert Traces 
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Figure 3:  Malignant Mass Image with  
Computer Segmented Results and Expert Traces 
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 Expert A Expert B Expert C 

Figure 4:  Malignant Mass Image with  
Computer Segmented Results and Expert Traces 

 
4. DISCUSSION OF RESULTS AND CONCLUSION 

 
4.1 Intra-observer Result Discussion 
The statistical analysis shows that there were statistically 
significant differences for Expert A regarding the experiment that 
tested the group 1 traces versus the group 2 traces and for the 
experiment that tested the group 1 trace versus the group 3 traces 
for all statistical measurements.  There were no statistically 
significant differences for the overlap, accuracy, and DSI 
measurements between the group 2 and group 3 traces, but the 
mean values for the group 3 traces were slightly higher than those 
of group 2.  There were statistically significant differences for 
Expert B regarding the experiment that tested the group 1 traces 
versus the group 2 traces and for the experiment that tested the 
group 1 trace versus the group 3 traces for nearly all statistical 
measurements.  There were no statistically significant differences 
for the overlap, accuracy, and DSI measurements between the 
group 2 and group 3 traces, but the mean values for the group 2 
traces were slightly higher than those of group 3.  There were 
statistically significant differences for Expert C regarding the 
experiment that tested the group 1 traces versus the group 2 traces 
and for the experiment that tested the group 1 trace versus the 
group 3 traces for nearly all statistical measurements. There were 
no statistically significant differences for the overlap, accuracy, 
and DSI measurements between the group 2 and group 3 traces, 
but again the mean values for the group 2 traces were slightly 
higher than or equal to those of group 3.  
 
  4.2 Inter-observer Result Discussion 
The statistical analysis shows statistically significant differences in 
the experiments for Expert A versus Expert B and Expert A versus 
Expert C for nearly all statistical measurements for the group 1 and 
group 2 traces; however, for the group 3 trace there were few 
statistically significant differences between Experts.   
 
4.3 Conclusion 
The intra-observer results show that Experts B and C tend to favor 
the group 2 traces in comparison to the groups 1 and 3 traces.  
However, Expert A tends to favor the group 3 trace, in comparison 
to the groups 1 and 2 traces.  These results are consistent with the 
fact that Expert A tends to draw larger traces, and the group 3 trace 
is always the largest of the three computer segmentation results.   
The inter-observer results show that the group 1 and group 2 traces 
are more closely correlated with Expert B, than with Experts A and 
C for nearly all statistical measurements.  This is probably the case 

because Expert B appeared to have to traced the largest mass area  
which encapsulates the mass without including surrounding 
fibroglandular tissue.    
Overall it appears that the group 2 trace may be the optimal 
contour trace for the aforementioned segmentation algorithm and 
in future work, we will test the effect of using the various 
segmentation results upon the results of a CADx system.  If 
possible, we will also incorporate more expert radiologist traces. 
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Our purpose in this work was to develop an automatic boundary detection method for mammo-
graphic masses and to rigorously test this method via statistical analysis. The segmentation method
utilized a steepest change analysis technique for determining the mass boundaries based on a
composed probability density cost function. Previous investigators have shown that this function
can be utilized to determine the border of the mass body. We have further analyzed this method and
have discovered that the steepest changes in this function can produce mass delineations that
include extended projections. The method was tested on 124 digitized mammograms selected from
the University of South Florida’s Digital Database for Screening Mammography~DDSM!. The
segmentation results were validated using overlap, accuracy, sensitivity, and specificity statistics,
where the gold standards were manual traces provided by two expert radiologists. We have con-
cluded that the best intensity threshold corresponds to a particular steepest change location within
the composed probability density function. We also found that our results are more closely corre-
lated with one expert than with the second expert. These findings were verifiedvia Analysis of
Variance~ANOVA ! testing. The ANOVA tests obtainedp-values ranging from 1.0331022– 7.51
310217 for the single observer studies and 2.0331022– 9.4331024 for the two observer studies.
Results were categorized using three significance levels, i.e.,p,0.001 ~extremely significant!, p
,0.01~very significant!, andp,0.05~significant!, respectively. ©2004 American Association of
Physicists in Medicine.@DOI: 10.1118/1.1781551#

Key words: mass boundary detection, mammography, probability-based cost function
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I. INTRODUCTION

In the United States, breast cancer accounts for one-thir
all cancer diagnoses among women and it has the se
highest mortality rate of all cancer deaths in women.1 Breast
cancer studies are therefore essential for its ultimate erad
tion. Several studies show that only 13%–29% of suspici
masses are determined to be malignant,2–4 indicating that
there are high false positive rates for biopsied breast mas
A higher predictive rate is anticipated by combining t
mammographer’s interpretation and the computer analy
2796 Med. Phys. 31 „10…, October 2004 0094-2405 Õ2004Õ31„
of
nd
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es.

is.

Other studies show that 7.6%–14% of the patients h
mammograms that produce false negative diagnoses.5,6 Alter-
natively, a Computer Assisted Diagnosis (CADx) system can
serve as a clinical tool for the radiologist and consequen
lower the rate of missed breast cancer.

Generally, CADx systems consist of three major stage
namely, segmentation, feature calculation, and classificat
Segmentation is arguably one of the most important asp
of CADx—particularly for masses—because a strong di
nostic predictor for masses is shape. Specifically, many
279610…Õ2796Õ15Õ$22.00 © 2004 Am. Assoc. Phys. Med.
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lignant masses have ill-defined, and/or spiculated bord
and many benign masses have well-defined, rounded
ders. Furthermore, breast masses can have unclear bo
and are sometimes obscured by glandular tissue in mam
grams. During the search for suspicious areas masses o
type may be overlooked by radiologists. When a specific a
is deemed to be suspicious, the radiologist analyzes the o
all mass, including its shape and margin characteristics.
margin of a mass is defined as the interface between the m
and surrounding tissue, and is regarded by some as on
the most important factors in determining its significanc7

Specifically, a spiculated mass consists of a central m
body surrounded by fibrous extensions, hence the resu
stellate shape. In this context, ‘‘extension’’ refers to tho
portions of the mass containing ill-defined borders, spicu
tions, fibrous borders, and projections. Although the dia
eters of these cancers are measured across the central p
of the mass, microscopic analysis of the extensions also
veals associated cancer cells, in other words, the exten
projections may contain active mass growth.7,8 In addition,
the features of the extended projections and ill-defined b
ders are highly useful for identifying masses. Hence, pro
segmentation—including the body and periphery—is ess
tial for the computer to analyze, and in turn, determine
malignancy of the mass in mammographic CADx systems.

Te Brake and Karssemeijer9 implemented a discrete dy
namic contour model, a method similar to snakes, wh
begins as a set of vertices connected by edges~initial con-
tour! and grows subject to internal and external forces. L10

developed a method that employsk-means classification to
categorize pixels as belonging to the region of interest~ROI!
or background. Petricket al.11 developed the Density
Weighted Contrast Enhancement~DWCE! method, in which
series of filters are applied to the image in an attempt
extract masses. Pohlmanet al.12 developed an adaptive re
gion growing method whose similarity criterion is dete
mined from calculations made in 535 windows surrounding
the pixel of interest. Mendezet al.13 developed a method
which combined bilateral image subtraction and reg
growing.

Several studies have also used probability-based ana
to segment digitized mammograms. Liet al.14 developed a
segmentation method that first models the histogram
mammograms using a finite generalized Gaussian mix
~FGGM! and then uses a contextual Bayesian relaxation
beling ~CBRL! technique to find suspected masses. Furth
more, this method uses the Expectation-Maximization~EM!
technique in developing the FGGM model. Comeret al.15

utilized an EM technique to segment digitized mammogra
into homogeneous texture regions by assigning each pix
one of a set of classes such that the number of incorre
classified pixels was minimized. Kupinski and Giger16 devel-
oped a method, which combines region growing with pro
ability analysis to determine final segmentation. In th
method, the probability-based function is formed from a s
cific composed probability density function, determined b
set of image contours produced by the region grow
method. This method is a highly effective one and it w
Medical Physics, Vol. 31, No. 10, October 2004
rs
r-
ers
o-
his
a

er-
e
ss
of

ss
ng
e
-
-
tion
e-
ed

r-
r

n-
e

h

o

n

sis

f
re
a-
r-

s
to
tly

-
r
-

a
g
s

implemented by Te Brake and Karssemeijer in their wo9

that compared the results of a model of the discrete dyna
contour model with those of the probability-based meth
For this reason, we chose to investigate its use as a pos
starting point from which a second method could be dev
oped. Consequently for our implementation of this work w
discovered an important result, i.e., the steepest changes
cost function composed from two probability density fun
tions of the regions. It appears that in many cases this re
produces contour choices that encapsulate important bor
such as mass spiculations and ill-defined borders.

Several CADx classification techniques have been dev
oped. They are described here to underscore the import
of accurate segmentation in CADx studies. Loet al.17 devel-
oped an effective analysis method using the circular p
neural network technique that was specifically designed
classify the segmented objects, and it can certainly be
tended for the applications related to mass classification.
lakowski et al.18 used a multilayer perceptron~MLP! neural
network to distinguish malignant and benign masses. B
Sahineret al.19 and Rangayyanet al.20 used linear discrimi-
nant analysis to distinguish benign masses from malign
masses. While many CADx systems have been develope
the development of fully-automated image segmentation
gorithms for breast masses has proven to be a daunting

II. METHODS

A. Segmentation method—Maximum change of cost
function as a continuation of probability-based
function analysis

As a point of clarification, the function used to find opt
mal region growing contours in the Kupinski and Gig
study16 is referred to as the probability-based function a
our function is referred to as the cost function. The two fun
tions are similar, however they differ in terms of the imag
used in their formation. As an initial segmentation step,
region growing is used to aggregate the area
interest,12,13,21where grayscale intensity is the similarity cr
terion. This phase of the algorithm starts with a seed po
whose intensity is high, and nearby pixels with values grea
than or equal to this value are included in the region
interest. As the intensity threshold decreases, the region
creases in size, therefore there is an inverse relationship
tween intensity value and contour size. In many cases
region growing method is extremely effective in produci
contours that are excellent delineations of mammograp
masses. However, the computer is not able to choose
contour that is most highly correlated with the experts’ d
lineations, specifically, those masses that contain ill-defi
margins or margins that extend into surrounding fibrogla
dular tissue. Furthermore, the task of asking a radiologis
visually choose the best contour would be both time int
sive and extremely subjective from one radiologist to a
other.

The segmentation technique described in this work
tempts to solve and automate this process by adding a
dimensional ~2-D! shadow and probability-based comp
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nents to the segmentation algorithm. Furthermore, we h
devised a steepest descent change analysis method
chooses the best contour which delineates the mass
contour as well as its extended borders, i.e., extensions
spiculations and areas in which the borders are ill-defined
obscured. It has been discovered that the probability-ba
function is capable of extracting the central portion of t
mass density as demonstrated by the previous investigato16

and in this work the method has been advanced further s
that it can include the extensions of the masses. The
hanced method can produce contours, which closely m
expert radiologist traces. Specifically, it has been obser
that this technique can select the contour that accurately
resents the mass body contour for a given set of parame
However, a further analysis of the cost function compos
from the probability density functions inside and outside o
given contour revealed that the computer could choose a
of three segmentation contour choices from the entire se
contour choices, and latter make a final decision from th
three choices.

1. Region growing and preprocessing

Initially, a 5123512 pixel area surrounding the mass w
cropped. The region growing technique12,13,21 to aggregate
the region of interest was employed, where the simila
criterion for our region growing algorithm is grayscale inte
sity. To start the growth of the first region, a seed point w
placed at the center of the 5123512 ROI. The region grow-
ing process continues by decreasing the intensity value u
we have grown a sufficiently large set of contours.

Next, the image is multiplied by a 2-D trapezoidal mem
bership function with rounded corners whose upper b
measures 40 pixels and lower base measures 250 p
(1 pixel550 microns). This function was chosen becaus
is a good model of the mammographic mass’ intensity dis
bution. Since the ROI’s have been cropped such that
mass’ center was located at the center of the 512 p
3512 pixel area, shadow multiplication emphasizes pi
values at the center of the ROI and suppresses backgr
pixels. The image to which the shadow has been applie
henceforth referred to as the ‘‘processed’’ image. The or
nal image and its processed version were used to com
the highest possibility of its boundaries. The computat
method is comprised of two components for a given bou
ary: ~1! formulation of the composed probability as a co
function and~2! evaluation of the cost function.

The contours were grown using the original image as
posed to the processed image, and this choice accounts
major difference between the current implementation a
that of the previous investigators.16 By using contours gen
erated from the original image, a cost function compos
from the probability density functions inside and outside
the contours was produced. In many situations, the grea
changes in contour shape and size occur at sudden decr
within the function. In analyzing these steep changes it w
observed that the intensity values corresponding to the s
changes typically produced contours that encapsulated
Medical Physics, Vol. 31, No. 10, October 2004
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the mass body as well as its spiculated projections or
defined margins. This phenomenon would be suppresse
the processed image was used to generate the conto
more detailed discussion of steep changes within the
function is forthcoming in Sec. II A 2 C.

The processed image was mainly used to construct
cost function. A common technique used in mass segme
tion studies is to pre-process the images using some typ
filtering mechanism11,16 in an effort to separate the mas
from surrounding fibroglandular tissue. This method cou
be particularly beneficial to the region growing process
cause it would aid in preventing the regions from growi
into surrounding tissue. Alternatively, the filtering proce
could impede our goal of attempting to encapsulate a ma
extended borders as well as borders that are ill-defined du
the filtering process’s a tendency to create rounded edge
margins that are actually jagged or spiculated. This phen
enon could potentially defeat the goal of extracting ma
borders. For these reasons, we have chosen to aggrega
contours using the original ROI rather its processed vers

2. Formulation of the composed probability as a
cost function

In the context of this work, the composed probability
defined as the probability density functions of the pixels
side and outside a contour using a processed and nonp
essed version of an image. Specifically, for a contour (Si),
the composed probability (Ci) is calculated:

Ci uSi5)
j 50

h

p„f ,~x,y!uSi…3)
j 50

h

p„mi~x,y!uSi…. ~1!

The quantityf i(x,y) is the set of pixels, which lie inside th
contourSi @see Fig. 1~a!#, and this area contained process
pixel values. The quantityp„f i(x,y)uSi… is the probability
density function of the pixels insideSi „f i(x,y)…, where ‘‘i’’
is the intensity threshold used to produce the contours gi
by the region growing step, and ‘‘h’’ is the maximum inten-
sity value. The quantitymi(x,y) is the set of pixels, which
lie outside the contourSi @see Fig. 1~b!#, and this area con-
tained nonprocessed pixels. The quantityp„mi(x,y)uSi… is

FIG. 1. Four grown contours used to construct the cost function: starts f
high intensity thresholds and moves towards low intensity thresholds. E
contour separates the ROI into two parts:~a! Segmented image~based on
processed image! used to compute density functionp( f i(x,y)uSi) and ~b!
masked image~based on the nonprocessed original image! used to compute
density functionp„mi(x,y)uSi… for four intensity threshold values.
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FIG. 2. ~a! Example of cost function with steepes
change location indicators.~b! Example of a
probability-based function without an obvious steepe
change location.
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the probability density function of the pixels outsideSi ,
where ‘‘i’’ is the intensity threshold used to produce the co
tours given by the region growing step, and ‘‘h’’ is the maxi-
mum intensity value. For implementation purposes, the lo
rithm of the composed probability of the two regions,Ci was
used:

Log~Ci uSi !5 logS )
j 50

h

p„f i~x,y!uSi…D
1 logS )

j 50

h

p„mi~x,y!uSi…D . ~2!

3. The cost function based on the composed
probability density functions

To select the contour that represents the fibrous portio
the mass, it is appropriate to examine the maximum valu
the cost function:

arg max„Log~Ci uSi !;Si ,i 51,...,n…. ~3!

It has been assessed~also by other investigators9,16! that the
intensity value corresponding to this maximum value is
optimal intensity needed to delineate the mass body cont
However, in the current implementation it was discover
that the intensity threshold corresponding to the maxim
value confines the contour to the fibrous portion of the ma
or, the mass body. In this study many of these contours
not include the extended borders. It is therefore hypothes
that the contour representing the mass extended borders
Medical Physics, Vol. 31, No. 10, October 2004
-

-

of
of

e
ur.
d

s,
id
ed
ay

well be determined by assessing the greatest changes o
cost function, or locating the steepest value changes wi
the function

d

di
„Log~Ci uSi !;Si ,i 51,...,n…. ~4!

Based on this assumption, cost functions associated
masses were analyzed. The analysis reveals that the
likely boundaries of masses associated with expert radi
gist traces are usually produced by the intensity value co
sponding to the first or second steepest change of value
mediately following the maximum value on the cost functi
@see Fig. 2~a!#. The description of this discovery is give
below. It is followed by a validation study described in Se
II B and by results shown in Sec. III. The overarching goal
the steep descent method is to determine whether a ce
contour is the best contour, and whether it represents
mass and its extended borders.

4. The definition of steepest change

The term ‘‘steepest change’’ is rather subjective. In th
work we define it as a location between two or more poi
in the cost function where the values experience a signific
change. When the values are plotted as a function of in
sity, these significant changes are often visible in the fu
tion. In some cases the cost function increases at a slow
therefore a potential steepest change location could
missed. The algorithm design compensates for this issue
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calculating the difference between values in steps over
eral values and comparing the results to two threshold
ues. The difference equation is given by

d~ t !5 f ~z2wt!2 f „z2w~ t11!…, t50,m, ~5!

wheref is the cost function,z is the maximum intensity,w is
the width of the interval over which the cost function diffe
ences are calculated~e.g.—for w55 differences are calcu
lated every 5 points!, andm is the total number of points in
the searchable area divided byw. Note that ‘‘wt’’ is associ-
ated with a specific contour ‘‘i’’ described earlier. If the value
of d(t) yields a value greater than or equal to a given thre
old, then the intensity corresponding to this location is de
mined to be a steepest change location. The threshold a
rithm occurs as follows:

If „d~ t !>TV1); t50,...,m

Then choice 15 intensity where that condition is sa
isfied.

If „d~ t !>TV2…; t5m,...,z

Then choice 25 intensity where that condition is sa
isfied.

where TV1 and TV2 are pre-defined threshold values,m is
the location in the function where the choice 1 condition
satisfied, andz is the location in the function where th
choice 2 condition is satisfied. During the examination of
contour growth with respect to the cost function, the fi
steepest change@d(t)MC1 as choice 1# is determined by TV1
immediately after the location of the maximum cost functi
value ~corresponding to the mass body discussed earl!.
The second the steepest change@d(t)MC2 as choice 2# is de-
termined by TV2 after the first steepest change has be
established.

Figure 1~a! illustrates how the algorithm is carried out. I
this figure, the maximum value on the cost function occ
for a grayscale intensity value of approximately 3330. T
searching process begins from this maximum point and
discovered that the first steepest change@d(t)MC1 as choice
1# occurs for a grayscale intensity value approximately eq
to 3200. From this point the searching process continues
it is discovered that the second steepest change@d(t)MC2 as
choice 2# occurs for a grayscale intensity value appro
mately equal to 3175. In summary, intensity values of 33
3200, and 3175 can be used to grow 3 potential mass d
eation candidates, and the large set of intensity choices
been narrowed to 3 choices. The following scenarios
curred when the three contour choices produced by the~1!
maximum intensity value on the cost function~2! the inten-
sity corresponding to the first steepest change on the
function, and~3! the intensity corresponding to the seco
steepest change on the cost function.

~1! Intensity corresponding to the maximum value on t
cost function: The central body of the mass was enc
sulated.
Medical Physics, Vol. 31, No. 10, October 2004
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~2! Intensity corresponding to the first steepest change
the cost function: The central body of the mass1some of
its extended borders~i.e., projections and spiculations!
was encapsulated.

~3! Intensity corresponding to the second steepest chang
the cost function: The central body of the mass1more
extended borders1surrounding fibroglandular tissue wa
encapsulated.

The intensity corresponding to the first steepest cha
provides the best choice, and an examination of this ob
vation is shown and discussed in Secs. III and IV of th
work.

As stated previously, the steep changes within the c
function would be suppressed if the processed image
used to generate the contour; therefore, the function wo
be relatively smooth. Figure 2~b!, which shows a probability-
based function produced by contours that were grown us
a processed ROI, demonstrates this issue.

B. Validation method

In several segmentation studies the results were valid
using the overlap statistic alone, however, it was necessa
analyze the performance of the steepest change algorithm
the basis of four statistics to verify that the algorithm is i
deed capable of categorizing mass and background pi
correctly. This type of analysis provides helpful informatio
regarding necessary changes for the algorithm’s design
can possibly aid in its optimization.

The segmentation method was validated on the basi
overlap, accuracy, sensitivity, and specificity.22,23 These sta-
tistics are calculated as follows:

Overlap5
NTP

NFN1NTP1NFP
, ~6!

Accuracy5
NTP1NTN

NTP1NTN1NFP1NFN
, ~7!

Sensitivity5
NTP

NTP1NFN
, ~8!

Specificity5
NTN

NTN1NFP
, ~9!

where NTP is the true positive fraction~part of the image
correctly classified as mass!, NTN true negative fraction~part
of the image correctly classified as surrounding tissue!, NFP

TABLE I. Distribution of DDSM masses studied according to their subtle
ratings.

Subtlety category Cancer Benign

Number of masses with a rating51 5 3
Number of masses with a rating52 12 12
Number of masses with a rating53 18 17
Number of masses with a rating54 9 23
Number of masses with a rating55 15 10
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is the false positive fraction~part of the image incorrectly
classified as mass!, and NFN is the false negative fraction
~part of the image incorrectly classified as surrounding
sue!. This method requires a gold standard, or, a contou
which the segmentation results can be compared. The
standards for the experiments performed in this work w
mass contours, which have been traced by expert radi
gists.

The experiments produced contours for the intensity v
ues resulting from three locations within the cost functio
~1! The intensity of the maximum value within the cost fun
tion; ~2! the intensity for which the cost function experienc
its first steepest change; and~3! the intensity for which the
cost function experiences its second steepest change. I
been observed that the intensity for which the cost funct
experiences its first steepest change produces the co
trace that is most highly correlated with the gold stand
traces, regarding overlap and accuracy. In cases for w
better results occur at the second steepest change loca
there is no significant difference between these results
the results calculated for the first steepest change loca
Second, it has been observed that the results are more cl
correlated with one expert than with the second expert. Th
hypotheses were tested using the one-way Analysis of V

FIG. 3. ~a! Segmentation results for a malignant mass with spiculated m
gins (subtlety52) ~b! the corresponding cost function.
Medical Physics, Vol. 31, No. 10, October 2004
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ance~ANOVA ! test.24,25 In this study, three significance lev
els ~i.e., p,0.001,p,0.01, andp,0.05) were used to cat
egorize the ANOVA results as described in the next secti

III. EXPERIMENTS AND RESULTS

The following sections describe the database and exp
ments, and provide segmentation results and ANOVA t
results.

A. Database

For this study, a total of 124 masses were chosen from
University of South Florida’s Digital Database for Screeni
Mammography~DDSM!.26 The DDSM films were digitized
at 43.5 or 50mm’s using either the Howtek or Lumisys dig
tizers, respectively. The DDSM cases have been ranked
expert radiologists on a scale from 1 to 5, where 1 repres
the most subtle masses and 5 represents the most ob
masses. Table I lists the distribution of the masses stud
according to their subtlety ratings. The images were of va
ing contrasts and the masses were of varying sizes.

r-

FIG. 4. ~a! Segmentation results for a malignant mass with ill-defined m
gins (subtlety53); ~b! the corresponding cost function.
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The first set of expert traces was provided by an attend
physician at Georgetown University Medical Cent
~GUMC!, and is hereafter referred to as the Expert A trac
The second set of expert traces was provided by the DD
and is hereafter referred to as the Expert B traces.

B. Experiments

As mentioned previously, the term ‘‘steepest change’
very subjective. Therefore, a set of thresholds needed to
set in an effort to define a particular location within the co
function as a ‘‘steepest change location.’’ For this stu
the following thresholds were experimentally chose
TV151800, TV251300, where TV1 equals the threshold fo
steepest change location 1 for the cost function, and T2

equals the threshold for steepest change location 2 for
cost function. A number of experiments were performed
an effort to prove that~1! the intensity for which the cos
function experiences the first steepest change location
duces the contour trace, which is most highly correlated w
the gold standard traces with regard to overlap and accur
In cases for which the second steepest change loca
achieves better results, there are no significant differen
between the values obtained from the first steepest cha

FIG. 5. ~a! Segmentation results for a benign mass with ill-defined marg
(subtlety53); ~b! the corresponding cost function.
Medical Physics, Vol. 31, No. 10, October 2004
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location and the second steepest change location. The ex
ments linked with these hypotheses comprise the studies
a single observer. We have also set out to prove that~2! our
results are more closely correlated with one expert than w
the second expert. The experiments linked with this hypo
esis comprise the studies between two observers. First
mentation results for two malignant cases are presented,
lowed by segmentation results for two benign cases. Sec
the ANOVA results for a set of hypotheses are presented.
contours produced by the maximum value as well as by
steepest change locations within the cost functions are
beled as follows:~1! group 1: The intensity for which a valu
within the cost function is maximum;~2! group 2: The inten-
sity for which the cost function experiences its first steep
change;~3! group 3: The intensity for which the cost func
tion experiences its second steepest change.

C. Results

Figures 3–6 display the results for two malignant ca
accompanied by their cost functions as well as results for
be--nign cases accompanied by their cost functions.
ANOVA results appear in a set of tables~Secs. II–IV!, where
each table lists the hypothesis tested along withp-values and
their corresponding categorizations. Thep-values are catego

s
FIG. 6. ~a! Segmentation results for a benign mass with circumscribed m
gins (subtlety54); ~b! the corresponding cost function.
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rized in the following way: not significant~NS for p
.0.05), significant~S for p,0.05), very significant~VS for
p,0.01), and extremely significant~ES forp,0.001). Each
p-value table is followed by a second table, which conta
the mean values of overlap, accuracy, sensitivity, and sp
ficity for each group. Sections II and III are identical regar
ing the experiments, however, the pathologies of the ma
Medical Physics, Vol. 31, No. 10, October 2004
s
ci-
-
es

are different~Sec. II—malignant masses, Sec. III—benig
masses!. Although the experiments are identical they ha
been separated for clarity purposes.

A larger set of segmentation results has been placed in
image gallery containing 7 malignant mass results~Fig. 7!
and 7! benign mass results~Fig. 8!. These figures are locate
in the Appendix.
1. Segmentation results

2. ANOVA test results for comparison of contour groups with single observer: Malignant cases

TABLE II. Single observer results~expert A gold standard, malignant masses!.

ANOVA test

P-value
~group 1 vs

group 2!

P-value
~group 2 vs

group 3!

P-value
~group 1 vs

group 3!

Difference between groups~overlap! 1.7831024 (ES) 2.9131022 (S) NS
Difference between groups~accuracy! NS 3.1431022 (S) NS
Difference between groups~sensitivity! 1.8831029 (ES) NS 1.85310213 (ES)
Difference between groups~specificity! 5.1231024 (ES) 2.4031023 (VS) 2.7131029 (ES)

TABLE III. Mean values for overlap, accuracy, sensitivity, and specificity~expert A gold standard, malignant
masses!.

Measurement
Mean value
~group 1!

Mean value
~group 2!

Mean value
~group 3!

Overlap 0.47 0.60 0.53
Accuracy 0.88 0.90 0.87
Sensitivity 0.49 0.75 0.81
Specificity 0.99 0.94 0.88

TABLE IV. Single observer results~expert B gold standard, malignant masses!.

ANOVA test

P-value
~group 1 vs

group 2!

P-value
~group 2 vs

group 3!

P-value
~group 1 vs

group 3!

Difference between groups~overlap! 3.9631026 (ES) NS 1.5831024

Difference between groups~accuracy! NS NS NS
Difference between groups~sensitivity! 4.8831028 (ES) 4.3131022 (S) 4.25310212 (ES)
Difference between groups~specificity! 2.7031024 (ES) 4.3631024 (ES) 1.4431027 (ES)

TABLE V. Mean values for overlap, accuracy, sensitivity, and specificity
~expert B gold standard, malignant masses!.

Measurement
Mean value
~group 1!

Mean value
~group 2!

Mean value
~group 3!

Overlap 0.38 0.54 0.51
Accuracy 0.83 0.86 0.84
Sensitivity 0.38 0.56 0.60
Specificity 1.00 0.98 0.94
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3. ANOVA test results for comparison of contour groups with single observer: Benign cases

TABLE VI. Single observer results~expert A gold standard, benign masses!.

ANOVA test

P-value
~group 1 vs

group 2!

P-value
~group 2 vs

group 3!

P-value
~group 1 vs

group 3!

Difference between groups~overlap! 3.1931024 (ES) 8.3831024 (ES) NS
Difference between groups~accuracy! NS 4.7331023 (VS) 2.5131023 (VS)
Difference between groups~sensitivity! 1.1431029 (ES) 1.8931022 (S) 7.51310217 (ES)
Difference between groups~specificity! 8.9331023 (VS) 1.2431023 (VS) 3.32310210 (ES)

TABLE VII. Mean values for overlap, accuracy, sensitivity, and specificity
~expert A gold standard, benign masses!.

Measurement
Mean value
~group 1!

Mean value
~group 2!

Mean value
~group 3!

Overlap 0.46 0.58 0.45
Accuracy 0.90 0.91 0.85
Sensitivity 0.49 0.73 0.82
Specificity 0.99 0.94 0.86

TABLE VIII. Single observer results~expert B gold standard, benign masses!.

ANOVA test

P-value
~group 1 vs

group 2!

P-value
~group 2 vs

group 3!

P-value
~group 1 vs

group 3!

Difference between groups~overlap! 8.8231025 (ES) NS 1.6231022 (S)
Difference between groups~accuracy! NS 2.6231022 (S) 2.4831022 (S)
Difference between groups~sensitivity! 1.6131027 (ES) NS 3.14310212 (ES)
Difference between groups~specificity! 1.1831022 (S) 1.2731022 (S) 1.2531027 (ES)

TABLE IX. Mean values for overlap, accuracy, sensitivity, and specificity
~expert B gold standard, benign masses!.

Measurement
Mean value
~group 1!

Mean value
~group 2!

Mean value
~group 3!

Overlap 0.36 0.51 0.44
Accuracy 0.88 0.89 0.83
Sensitivity 0.36 0.61 0.69
Specificity 0.99 0.94 0.86
Medical Physics, Vol. 31, No. 10, October 2004



4. ANOVA test results for comparison of contour groups between two observers
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TABLE X. Two observer results: expert A vs expert B, malignant masses.

ANOVA test

P-value
~group 1 vs

group 2!

P-value
~group 2 vs

group 3!

P-value
~group 1 vs

group 3!

Expert A vs expert B~overlap! 3.1231023 (VS) 3.3231022 (S) NS
Expert A vs expert B~accuracy! 1.2031022 (S) 4.4631022 (S) NS
Expert A vs expert B~sensitivity! 9.4331024 (ES) 3.3831024 (ES) 3.6731024 (ES)
Expert A vs expert B~specificity! NS NS NS

TABLE XI. Mean values for overlap, accuracy, sensitivity, and specificity~expert A vs expert B, malignant masses!.

Measurement

Mean
value,

expert A
~group 1!

Mean
value,

expert B
~group 1!

Mean
value,

expert A
~group 2!

Mean
value,

expert B
~group 2!

Mean
value,

expert A
~group 3!

Mean
value,

expert B
~group 3!

Overlap 0.49 0.38 0.62 0.55 0.55 0.51
Accuracy 0.89 0.83 0.91 0.87 0.87 0.84
Sensitivity 0.52 0.38 0.75 0.60 0.82 0.68
Specificity 0.99 1.00 0.95 0.97 0.89 0.91

TABLE XII. Two observer results: expert A vs expert B, benign masses.

ANOVA test

P-value
~group 1 vs

group 2!

P-value
~group 2 vs

group 3!

P-value
~group 1 vs

group 3!

Expert A vs expert B~overlap! NS NS NS
Expert A vs expert B~accuracy! NS NS NS
Expert A vs expert B~sensitivity! 3.5631022 (S) 4.9031022 (S) 2.0331022 (S)
Expert A vs expert B~specificity! NS NS NS

TABLE XIII. Mean values for overlap, accuracy, sensitivity, and specificity: expert A vs expert B, benign masses.

Measurement

Mean
value,

expert A
~group 1!

Mean
value,

expert B
~group 1!

Mean
value,

expert A
~group 2!

Mean
value,

expert B
~group 2!

Mean
value,

expert A
~group 3!

Mean
value,

expert B
~group 3!

Overlap 0.42 0.35 0.57 0.50 0.48 0.44
Accuracy 0.90 0.88 0.91 0.89 0.85 0.83
Sensitivity 0.44 0.36 0.71 0.61 0.79 0.69
Specificity 0.99 0.99 0.94 0.94 0.86 0.86
Medical Physics, Vol. 31, No. 10, October 2004
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IV. DISCUSSION

A. Segmentation results

The ROI’s shown in Figs. 3 and 4 demonstrate that
intensity produced by the maximum value is capable of
curately delineating the mass body contour, and in so
cases this intensity corresponding to the maximum va
produces a contour, which falls inside the mass body cont
This situation can be problematic because low segmenta
sensitivities can produce large errors during the feature
culation and classification phases of CADx . Of the three
available segmentation choices for each mass, it appears
the first steepest change location produces the contours
the strongest correlation in comparison to both gold st
dards. These contours appear to cover both the mass
contour as well as the extended borders. In some insta
the region grows into some areas that are not declare
mass areas by the gold standards—we call this floodin
and fails to grow into other areas that have been declare
mass areas. Finally, the second steepest change location
duces contours that also cover both the mass body conto
well as the extended borders, and, these contours tend to
include surrounding fibroglandular tissue; hence, the flo
ing phenomenon is a common occurrence. In the ca
shown, it is clear that steepest change location 1 produce
best contours, in comparison to the gold standards, howe
the ANOVA test results allow us to make such a claim. T
following discussion is divided into five sections: single o
server malignant results, single observer benign results,
two observer results~malignant and benign!, algorithm per-
formance, and an additional discussion on methods.

B. Malignant cases with single observer

For both the expert A and expert B gold standards, Tab
II–V show a statistically significant difference betwee
groups 1 and 2 on the basis of overlap and sensitivity, wh
the mean values of group 2 were higher than the mean va
of group 1 for these statistics. These results are expe
because as shown in the figures, the group 2 contours
sistently covered more of the mass area~and correctly cov-
ered this mass area! as compared to the group 1 contou
according to both experts. There was a statistically sign
cant difference in sensitivity between group 1 and group
where the mean of group 3 was higher than the mean
group 1. This difference is an expected result because ou
all the groups, group 3 contours consistently covered
most mass area. For the expert B gold standard there w
statistically significant difference in overlap between grou
and group 3, where the mean of group 3 was higher than
mean of group 1. This difference is also an expected re
because, out of all the groups, the group 3 contours cov
the most mass area correctly.

C. Benign cases with single observer

For the expert A traces there were statistically signific
differences between the group 2 and group 3 traces on
Medical Physics, Vol. 31, No. 10, October 2004
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basis of overlap, accuracy, and sensitivity, where the grou
mean values for overlap and accuracy were higher than th
of group 3 ~see Tables VI–IX!. This difference is an ex-
pected result because it is likely that many of the group
contours contained flooded areas, which cause both of th
values to be lower than those values of contours with
flooded areas. The overlap and sensitivity values for grou
were significantly higher than those of group 1. This diffe
ence is also an expected result because the group 2 con
not only covered more mass area but also covered this
correctly. Finally, the group 3 accuracy and sensitivity valu
were significantly higher than those for group 1. Again th
difference is an expected result because the group 3 cont
not only covered more mass area but they also covered
area correctly.

For the expert B gold standard there were statistica
significant differences between the group 2 and group
traces on the basis of accuracy and sensitivity, where
group 2 mean values for overlap and accuracy were hig
than those of group 3. This difference is an expected re
because it is likely that many of the group 3 contours co
tained flooded areas, which cause both of these values t
lower than contours without flooded areas. There were
tistically significant differences between group 1 and grou
on the basis of overlap and sensitivity, where the mean
ues for group 2 were higher than the mean values for gr
1. This is an expected result because the group 2 contour
only covered more mass area but they also covered this
correctly. There were statistically significant differences b
tween group 3 and group 1 on the basis of overlap and s
sitivity, where the mean values for group 3 were higher th
those of group 1. Again this difference is an expected re
because the group 3 contours not only covered more m
area but they covered this area correctly.

In nearly all cases for the single observer studies, it w
expected that the specificity values for group 1 would alwa
be higher than those for groups 2 and 3 because this con
always covered the smallest mass area; consequentl
background was always highly correlated with the ba
ground areas dictated by the gold standards. Moreover
some cases the group 2 and group 3 contours grew into a
that were not regarded as mass, but rather were regarde
background; therefore, their specificity values had a low
correlation with the gold standard as compared to the gr
1 contours.

D. Malignant and benign cases with two observers

For the two observer studies, comparisons were made
tween experts A and B on a group-by-group basis in an ef
to prove that there were significant differences between
two radiologists on the basis of overlap, accuracy, sensitiv
and specificity ~see Tables X–XIII!. For the malignant
masses, there were statistically significant differences
tween the two experts on the basis of overlap, accuracy,
sensitivity. There was a statistically significant difference b
tween the two experts for group 3 on the basis of sensitiv
For the benign masses, there were statistically significant
ferences between the two experts for all three groups on
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basis of sensitivity. For all cases, expert A’s values were c
sistently higher than those of expert B. These statistic
significant differences between the experts were expe
due to their differences in opinion. The fact that expert A
mean values were higher than those for expert B, howe
does not warrant the conclusion that expert A is a more r
able expert; however, it does warrant the conclusion t
there is stronger agreement between the computer’s re
and expert A’s traces. Furthermore, there were less sta
cally significant differences for the benign cases than for
malignant cases. This result is expected because, in gen
benign masses have better defined borders, and thus the
experts were more likely to agree.

E. Algorithm performance

Apparently the chosen thresholds produce first stee
change location intensities that generate contours clo
correlated with the expert traces. In some instances the
ond steepest change location is extremely far from the
steepest change location, which implies that the function
question increases very slowly; moreover, many of the s
ond steepest change location intensities produce cont
with flooded areas. For the majority of the cases in which
second steepest change location contour achieves a h
sensitivity value, but not a significantly higher sensitivi
value, we can still choose the first steepest change loca
contour because the difference between the two contou
likely to be negligible.

In analyzing the probability-based cost functions, w
found that those functions with very steep changes are t
cally associated with masses that have well-defined bor
while those functions that increase slowly are associa
with masses that have ill-defined borders. This phenome
may make it necessary to develop an adaptive threshold
cess for the steepest change evaluation such that the
tions are grouped into various categories~e.g., smooth versus
steep!, because a threshold value that is optimal for a st
function may not be optimal for a smooth function.

F. Additional discussion on methods used

In this study the steepest descent method appears to
the advantage of locating ill-defined margins as well as
tensions such as malignant spiculations and projections
mammographic masses. If solely the human eye is use
can be difficult to separate the mass from the surround
fibroglandular tissue. Therefore, this method has the po
tial to complement the process of reading mammograp
films. One of the downfalls of the method is its dependen
upon the assumption that masses are generally light in c
This assumption impedes the region growing process
cause masses that contain darker areas and are surround
one or more sides by bright tissue can cause contour
flood into areas that are not actual mass tissue. Typically,
situation occurs for the mass located on the border of
breast region on a mammogram.

All of the segmentation methods surveyed in the introd
tion of this paper are excellent solutions for the proble
Medical Physics, Vol. 31, No. 10, October 2004
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their authors set out to solve, however, in some cases
difficult to make comparisons between different metho
without the availability of a set of several visual results.
some studies, the focus was either to detect masses o
distinguish malignant from benign masses. Thus, the val
tion process did not take the form of a comparison w
expert radiologist manual traces; but rather, features w
calculated on the potential mass candidates and they w
later classified as being mass tissue or normal tissue.10–13

The purpose of Li’s study14 was to distinguish between nor
mal and abnormal tissue; thus the authors did not prov
any statistics such as overlap or accuracy. Nevertheless
study contains a figure of 60 masses that contain both c
puter and radiologist annotations to give the reader an ide
the computer algorithm’s performance. Te Brake and Kars
meijer’s study9 used the overlap statistic to test the effica
of their method. They indicated that the central mass a
was delineated by the radiologist and their computer res
were compared to these annotations. The Kupinski and G
study16 also used the overlap statistic to test the efficacy
their method and set a threshold for which the mass w
considered to be successfully segmented. For exam
masses whose overlap values are greater than 0.7 imply
there was successful segmentation.

The technical method presented herein shows that the
sults obtained from the maximization of the composed pr
ability density function~i.e., the cost function! are equivalent
to those obtained from previous methods presented by
vious investigators. However, the steepest change of
composed probability density function is the closest to ra
ologists’ determinations.

V. CONCLUSION

We have shown that our fully automatic boundary det
tion method for malignant and benign masses can effectiv
delineate these masses using intensities, that correspon
the first steepest change location within their cost functio
Additionally, the method appears to be more highly cor
lated with one set of expert traces than with a second se
expert traces, regarding the accuracy and overlap statis
This result shows that inter-observer variability can be
important factor in segmentation algorithm design, and it h
motivated us to seek the opinions of more expert radiolog
to test the robustness of our algorithm. The second stee
change location intensity will always yield contours wi
higher sensitivity values, however, it behooves us to cho
the first steepest change location intensity because it av
the risk of choosing contours that contain substantial flo
ing. In future work, a worthwhile study would run the ex
periments for different threshold values in an effort to d
cover the possibility of deriving an optimal thresho
procedure. We believe that such a procedure would impr
the method of choosing optimal contours.
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FIG. 7. Segmentation results for a se
of malignant masses.
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FIG. 8. Segmentation results for a se
of benign masses.
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